dc.contributor.author |
Kontou, E |
en |
dc.contributor.author |
Kallimanis, A |
en |
dc.date.accessioned |
2014-03-01T01:25:23Z |
|
dc.date.available |
2014-03-01T01:25:23Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0266-3538 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17647 |
|
dc.subject |
Fibre composites |
en |
dc.subject |
Plasticity |
en |
dc.subject |
Strain rate effect |
en |
dc.subject |
Temperature effect |
en |
dc.subject |
Viscoplasticity |
en |
dc.subject.classification |
Materials Science, Composites |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Elastoplasticity |
en |
dc.subject.other |
Glass fibers |
en |
dc.subject.other |
Hardening |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Strain rate |
en |
dc.subject.other |
Tensile testing |
en |
dc.subject.other |
Thermal effects |
en |
dc.subject.other |
Viscoplasticity |
en |
dc.subject.other |
Dynamic mechanical analysis (DMA) |
en |
dc.subject.other |
Fibre-reinforced polymer composites |
en |
dc.subject.other |
Tensile behaviour |
en |
dc.subject.other |
Thermo-visco-plastic behaviour |
en |
dc.subject.other |
Fiber reinforced materials |
en |
dc.subject.other |
analysis |
en |
dc.subject.other |
anisotropy |
en |
dc.subject.other |
elastoplasticity |
en |
dc.subject.other |
fiber reinforced composite |
en |
dc.subject.other |
glass fiber |
en |
dc.subject.other |
strain |
en |
dc.subject.other |
temperature effect |
en |
dc.subject.other |
tensile property |
en |
dc.subject.other |
testing |
en |
dc.title |
Thermo-visco-plastic behaviour of fibre-reinforced polymer composites |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compscitech.2005.11.017 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compscitech.2005.11.017 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
The effect of temperature and strain rate on the tensile behaviour on a series of polymeric matrix-unidirectional glass-fibre composites was studied. Dynamic mechanical analysis (DMA) experiments, as well as tensile tests at three different strain rates and three different temperatures below T-g were performed on off-axis specimens of three different orientations. The strong temperature and strain rate dependence, exhibited by the materials examined, was further described theoretically by applying a formulation of finite elastoplasticity. Constitutive laws based on the material anisotropy, were applied, in combination with constitutive equations of hypoelasticity, written in their objective form. Moreover, empirical equations for the hardening coefficients, arising from the thermal activation theory, were proposed to formulate the temperature and strain rate effect. (c) 2005 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Composites Science and Technology |
en |
dc.identifier.doi |
10.1016/j.compscitech.2005.11.017 |
en |
dc.identifier.isi |
ISI:000239138700010 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
1588 |
en |
dc.identifier.epage |
1596 |
en |