dc.contributor.author |
Vouldis, AT |
en |
dc.contributor.author |
Kechribaris, CN |
en |
dc.contributor.author |
Maniatis, TA |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.contributor.author |
Uzunoglu, NK |
en |
dc.date.accessioned |
2014-03-01T01:25:24Z |
|
dc.date.available |
2014-03-01T01:25:24Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
0018-9456 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17649 |
|
dc.subject |
Acoustic scattering |
en |
dc.subject |
Biomedical imaging |
en |
dc.subject |
Inverse problems |
en |
dc.subject |
Tomography |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.other |
Acoustic scattering |
en |
dc.subject.other |
Biomedical imaging |
en |
dc.subject.other |
Data measurements |
en |
dc.subject.other |
Illumination planes |
en |
dc.subject.other |
Acoustic wave scattering |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Biomedical engineering |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
Computerized tomography |
en |
dc.title |
Three-dimensional diffraction tomography using filtered backpropagation and multiple illumination planes |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TIM.2006.884276 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TIM.2006.884276 |
en |
heal.language |
English |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
In this paper, a three-dimensional (3-D) extension of the well-known filtered-backpropagation (FBP) algorithm is presented with the aim of taking into account scattered-field-data measurements obtained using incident directions not restricted in a single plane. The FBP algorithm has been extensively used to solve the two-dimensional inverse-scattering problem under the first-order Born and Rytov approximations for weak scatterers. The extension of this algorithm in three dimensions is not straightforward, because the task of collecting the data needed to obtain a low-pass filtered version of the scattering object, taking into account all spatial frequencies within a radius of √2k0, and of incorporating these data to the FBP algorithm, needs to be addressed. A simple extension using incident field directions restricted to a single plane (illumination plane) leaves a region of spatial frequencies of the sphere of radius √2k0 undetermined. The locus of these spatial frequencies may be crucial for the accurate reconstruction of objects which do not vary slowly along the axis perpendicular to the illumination plane. The proposed 3-D FBP algorithm presented here is able to incorporate the data collected from more than one illumination plane and to ensure the reliability of the reconstruction results. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Instrumentation and Measurement |
en |
dc.identifier.doi |
10.1109/TIM.2006.884276 |
en |
dc.identifier.isi |
ISI:000242948700015 |
en |
dc.identifier.volume |
55 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1975 |
en |
dc.identifier.epage |
1983 |
en |