HEAL DSpace

Three-steps iterative algorithms for mixed variational inequalities

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bnouhachem, A en
dc.contributor.author Noor, MA en
dc.contributor.author Rassias, ThM en
dc.date.accessioned 2014-03-01T01:25:24Z
dc.date.available 2014-03-01T01:25:24Z
dc.date.issued 2006 en
dc.identifier.issn 0096-3003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17650
dc.subject Mixed variational inequalities en
dc.subject Pseudomonotone en
dc.subject Resolvent operator en
dc.subject Self-adaptive rules en
dc.subject.classification Mathematics, Applied en
dc.subject.other Algorithms en
dc.subject.other Convergence of numerical methods en
dc.subject.other Problem solving en
dc.subject.other Mixed variational inequalities en
dc.subject.other Pseudomonotone en
dc.subject.other Resolvent operator en
dc.subject.other Self-adaptive rules en
dc.subject.other Iterative methods en
dc.title Three-steps iterative algorithms for mixed variational inequalities en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.amc.2006.05.086 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.amc.2006.05.086 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract It is well known that the mixed variational inequalities are equivalent to the fixed point problems and the resolvent equations. Using this equivalence, we suggest and consider a new three-step iterative method for solving mixed variational inequalities. The new iterative method is obtained by using three-steps under suitable conditions. We prove that the new method is globally convergent. Our results can be viewed as significant extensions of the previously known results for mixed variational inequalities. Since mixed variational inequalities include variational inequalities as special cases, our method appears to be a new one for solving variational inequalities. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method. (c) 2006 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematics and Computation en
dc.identifier.doi 10.1016/j.amc.2006.05.086 en
dc.identifier.isi ISI:000243828600044 en
dc.identifier.volume 183 en
dc.identifier.issue 1 en
dc.identifier.spage 436 en
dc.identifier.epage 446 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής