HEAL DSpace

Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doganis, P en
dc.contributor.author Alexandridis, A en
dc.contributor.author Patrinos, P en
dc.contributor.author Sarimveis, H en
dc.date.accessioned 2014-03-01T01:25:24Z
dc.date.available 2014-03-01T01:25:24Z
dc.date.issued 2006 en
dc.identifier.issn 0260-8774 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17652
dc.subject Dairy products en
dc.subject Evolutionary computation en
dc.subject Fresh milk en
dc.subject Genetic algorithms en
dc.subject Neural networks en
dc.subject Sales forecasting en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Food Science & Technology en
dc.subject.other Evolutionary algorithms en
dc.subject.other Genetic algorithms en
dc.subject.other Neural networks en
dc.subject.other Sales en
dc.subject.other Time series analysis en
dc.subject.other Fresh milk en
dc.subject.other Product quality en
dc.subject.other Production planning en
dc.subject.other Dairy products en
dc.title Time series sales forecasting for short shelf-life food products based on artificial neural networks and evolutionary computing en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jfoodeng.2005.03.056 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jfoodeng.2005.03.056 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Due to the strong competition that exists today, most manufacturing organizations are in a continuous effort for increasing their profits and reducing their costs. Accurate sales forecasting is certainly an inexpensive way to meet the aforementioned goals, since this leads to improved customer service, reduced lost sales and product returns and more efficient production planning. Especially for the food industry, successful sales forecasting systems can be very beneficial, due to the short shelf-life of many food products and the importance of the product quality which is closely related to human health. In this paper we present a complete framework that can be used for developing nonlinear time series sales forecasting models, The method is a combination of two artificial intelligence technologies, namely the radial basis function (RBF) neural network architecture and a specially designed genetic algorithm (GA). The methodology is applied successfully to sales data of fresh milk provided by a major manufacturing company of dairy products. (c) 2005 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Journal of Food Engineering en
dc.identifier.doi 10.1016/j.jfoodeng.2005.03.056 en
dc.identifier.isi ISI:000236646500006 en
dc.identifier.volume 75 en
dc.identifier.issue 2 en
dc.identifier.spage 196 en
dc.identifier.epage 204 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής