dc.contributor.author |
Kauffman, LH |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:25:27Z |
|
dc.date.available |
2014-03-01T01:25:27Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.issn |
14249286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17671 |
|
dc.subject |
Continued fraction |
en |
dc.subject |
Convergent |
en |
dc.subject |
DNA |
en |
dc.subject |
Hard unknot |
en |
dc.subject |
Knot |
en |
dc.subject |
Link |
en |
dc.subject |
Rational knot |
en |
dc.subject |
Rational tangle |
en |
dc.subject |
Recombination |
en |
dc.subject |
Reidemeister move |
en |
dc.subject |
Tangle |
en |
dc.subject |
Tangle fraction |
en |
dc.title |
Unknots and molecular biology |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00032-006-0063-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00032-006-0063-3 |
en |
heal.publicationDate |
2006 |
en |
heal.abstract |
This article shows that an unknot is obtained as the numerator closure of the sum of two rational tangles, whose respective fractions are P/Q and R/S, if and only if PS - QR = ±1. This result is used to construct many examples of unknotted diagrams, including ""hard"" unknot diagrams that require non-simplifying Reidemeister moves in order to be unknotted. The paper then discusses minimal hard unknots and the applications of these results to DNA recombination. © Birkhäuser Verlag, Basel 2006. |
en |
heal.journalName |
Milan Journal of Mathematics |
en |
dc.identifier.doi |
10.1007/s00032-006-0063-3 |
en |
dc.identifier.volume |
74 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
227 |
en |
dc.identifier.epage |
263 |
en |