HEAL DSpace

Yielding oscillator subjected to simple pulse waveforms: Numerical analysis & closed-form solutions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mylonakis, G en
dc.contributor.author Voyagaki, E en
dc.date.accessioned 2014-03-01T01:25:30Z
dc.date.available 2014-03-01T01:25:30Z
dc.date.issued 2006 en
dc.identifier.issn 0098-8847 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17692
dc.subject Case study en
dc.subject Closed-form solution en
dc.subject Near fault en
dc.subject Numerical analysis en
dc.subject Pulse en
dc.subject Yielding oscillator en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Geological en
dc.subject.other Damping en
dc.subject.other Ductility en
dc.subject.other Earthquake resistance en
dc.subject.other Numerical analysis en
dc.subject.other Oscillators (mechanical) en
dc.subject.other Stiffness en
dc.subject.other Waveform analysis en
dc.subject.other Closed-form solution en
dc.subject.other Ground acceleration pulses en
dc.subject.other Near fault en
dc.subject.other Yielding oscillator en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other ductility en
dc.subject.other earthquake rupture en
dc.subject.other elastic wave en
dc.subject.other fault en
dc.subject.other ground motion en
dc.subject.other numerical model en
dc.subject.other structural response en
dc.subject.other waveform analysis en
dc.title Yielding oscillator subjected to simple pulse waveforms: Numerical analysis & closed-form solutions en
heal.type journalArticle en
heal.identifier.primary 10.1002/eqe.615 en
heal.identifier.secondary http://dx.doi.org/10.1002/eqe.615 en
heal.language English en
heal.publicationDate 2006 en
heal.abstract Numerical and analytical solutions are presented for the elastic and inelastic response of single-degree-of-freedom yielding oscillators to idealized ground acceleration pulses. These motions are typical of near-fault earthquake recordings generated by forward rupture directivity and may inflict damage in the absence of substantial structural strength and ductility capacity. Four basic pulse waveforms are examined: (1) triangular; (2) sinusoidal; (3) exponential; and (4) rectangular. In the first part of the article, a numerical study is presented of the effect of oscillator period, strength, damping, post-yielding stiffness and number of excitation cycles, on inelastic response. Results are presented in the form of dimensionless graphs and regression formulas that elucidate the salient features of the problem. It is shown that conventional R-mu relations may significantly underestimate ductility demand imposed by near-fault motions. The second part of the article concentrates on elastic -perfectly plastic oscillators. Closed-form solutions are derived for post-yielding response and associated ductility demand. It is shown that all three ground motion histories (i.e. acceleration, velocity, and displacement) control oscillator response-contrary to the widespread view that ground velocity alone is of leading importance. The derived solutions provide insight on the physics of inelastic response, which is often obscured by the complexity of numerical algorithms and actual earthquake motions. The model is evaluated against numerical results from near-field recordings. A case study is presented. Copyright (C) 2006 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName Earthquake Engineering and Structural Dynamics en
dc.identifier.doi 10.1002/eqe.615 en
dc.identifier.isi ISI:000242684300005 en
dc.identifier.volume 35 en
dc.identifier.issue 15 en
dc.identifier.spage 1949 en
dc.identifier.epage 1974 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής