dc.contributor.author |
Chinnaboon, B |
en |
dc.contributor.author |
Chucheepsakul, S |
en |
dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:25:35Z |
|
dc.date.available |
2014-03-01T01:25:35Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0219-4554 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17700 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Buckling |
en |
dc.subject |
Elastic plates |
en |
dc.subject |
Meshless |
en |
dc.subject |
Radial basis functions |
en |
dc.subject |
Thin plate splines |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.subject.other |
Analog equation method |
en |
dc.subject.other |
Elastic plates |
en |
dc.subject.other |
Meshless |
en |
dc.subject.other |
Thin plate splines |
en |
dc.subject.other |
Boundary element method |
en |
dc.title |
A BEM-based meshless method for elastic buckling analysis of plates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0219455407002162 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0219455407002162 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper, a BEM-based meshless method is developed for buckling analysis of elastic plates with various boundary conditions that include elastic supports and restraints. The proposed method is based on the concept of the Analog Equation Method (AEM) of Katsikadelis. According to this method, the original eigenvalue problem for a governing differential equation of buckling is replaced by an equivalent plate bending problem subjected to an appropriate fictitious load under the same boundary conditions. The fictitious load is established using a technique based on BEM and approximated by using the radial basis functions. The eigenmodes of the actual problem are obtained from the known integral representation of the solution for the classical plate bending problem, which is derived using the fundamental solution of the biharmonic equation. Thus, the kernels of the boundary integral equations are conveniently established and evaluated. The method has all the advantages of the pure BEM. To validate its effectiveness, accuracy as well as applicability of the proposed method, numerical results of various problems are presented. © World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Structural Stability and Dynamics |
en |
dc.identifier.doi |
10.1142/S0219455407002162 |
en |
dc.identifier.isi |
ISI:000250844000004 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
81 |
en |
dc.identifier.epage |
99 |
en |