HEAL DSpace

A BEM-based meshless method for plates on biparametric elastic foundation with internal supports

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chinnaboon, B en
dc.contributor.author Katsikadelis, JT en
dc.contributor.author Chucheepsakul, S en
dc.date.accessioned 2014-03-01T01:25:37Z
dc.date.available 2014-03-01T01:25:37Z
dc.date.issued 2007 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17701
dc.subject boundary element method en
dc.subject meshless en
dc.subject analog equation en
dc.subject plates en
dc.subject biparametric elastic foundation en
dc.subject internal supports en
dc.subject multiquadrics en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other INTEGRAL-EQUATION METHOD en
dc.subject.other BOUNDARY-ELEMENT METHOD en
dc.subject.other CLAMPED PLATES en
dc.subject.other 2-PARAMETER FOUNDATION en
dc.title A BEM-based meshless method for plates on biparametric elastic foundation with internal supports en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2007.02.012 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2007.02.012 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper a BEM-based meshless method is developed for the analysis of plates on a biparametric elastic foundation which, in addition to the boundary supports, are also supported inside the domain on isolated points (a group of plies) and/or line supports (continuous plates). The presented method is achieved using the concept of the analog equation method (AEM) of Katsikadelis. According to this method the original governing differential equation is replaced by an equivalent problem for plates without internal supports not resting on an elastic foundation subjected to an "appropriate" fictitious load in addition to the transverse external loads under the same boundary conditions. The fictitious load is established using a technique based on BEM and approximated by radial basis functions series. The solution of the actual problem is obtained from the known integral representation of the solution for the classical plate bending problem, which is derived using the fundamental solution of the biharmonic equation. Thus, the kernels of the boundary integral equations are conveniently established and evaluated. The presented method has all the advantages of the pure BENI. To validate the effectiveness, accuracy as well as the applicability of the proposed method, numerical results of various example problems are presented. (C) 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING en
dc.identifier.doi 10.1016/j.cma.2007.02.012 en
dc.identifier.isi ISI:000248605400007 en
dc.identifier.volume 196 en
dc.identifier.issue 33-34 en
dc.identifier.spage 3165 en
dc.identifier.epage 3177 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής