HEAL DSpace

A distributed intelligent agent platform for genetic optimization in CEM: Applications in a quasi-point matching method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lymperopoulos, DG en
dc.contributor.author Tsitsas, NL en
dc.contributor.author Kaklamani, DI en
dc.date.accessioned 2014-03-01T01:25:40Z
dc.date.available 2014-03-01T01:25:40Z
dc.date.issued 2007 en
dc.identifier.issn 0018-926X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17717
dc.subject Cooperative systems en
dc.subject Distributed genetic algorithms (DGAs) en
dc.subject Fictitious sources (FSs) en
dc.subject Genetic search agents (GSA) en
dc.subject Least squares methods en
dc.subject Point matching methods en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Computational methods en
dc.subject.other Distributed computer systems en
dc.subject.other Genetic algorithms en
dc.subject.other Intelligent agents en
dc.subject.other Least squares approximations en
dc.subject.other Optimization en
dc.subject.other Cooperative systems en
dc.subject.other Distributed genetic algorithms en
dc.subject.other Fictitious sources en
dc.subject.other Genetic search agents en
dc.subject.other Point matching methods en
dc.subject.other Electromagnetic fields en
dc.title A distributed intelligent agent platform for genetic optimization in CEM: Applications in a quasi-point matching method en
heal.type journalArticle en
heal.identifier.primary 10.1109/TAP.2007.891560 en
heal.identifier.secondary http://dx.doi.org/10.1109/TAP.2007.891560 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The use of genetic algorithms in computational electromagnetics (CEM) has proved a fruitful, but resource demanding optimization method with numerous practical applications. This paper introduces a parallel distributed computing framework based on the intelligent agent technology that is capable of handling the genetic optimization for diverse CEM problems. The platform core component is the genetic search agent (GSA), a collaborative computational entity that communicates with its peers in order to carry out a genetic optimization scheme. The platform can interface with foreign codes transparently due to its flexible code loading mechanisms, specially designed for CEM applications. The framework is applied to the optimization of a quasi-point matching method with fictitious sources (QPM-FS). The analysis comprises two case studies, involving electromagnetic scattering by: i) a two-layered cylinder; and ii) a cylinder buried in a two-layered earth medium, a problem of practical use in subsurface imaging. The performance results indicate that the sophisticated distribution mechanisms achieve high speed-up, while physically intuitive conclusions are obtained from the genetic optimization of the developed QPM-FS method. © 2007 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Antennas and Propagation en
dc.identifier.doi 10.1109/TAP.2007.891560 en
dc.identifier.isi ISI:000244969900012 en
dc.identifier.volume 55 en
dc.identifier.issue 3 I en
dc.identifier.spage 619 en
dc.identifier.epage 628 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής