dc.contributor.author |
Christakou, C |
en |
dc.contributor.author |
Vrettos, S |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T01:25:41Z |
|
dc.date.available |
2014-03-01T01:25:41Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0218-2130 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17723 |
|
dc.subject |
Collaborative filtering |
en |
dc.subject |
Content-based filtering |
en |
dc.subject |
Hybrid systems |
en |
dc.subject |
Recommender |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.other |
Boolean algebra |
en |
dc.subject.other |
Fuzzy logic |
en |
dc.subject.other |
Information systems |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Collaborative filtering |
en |
dc.subject.other |
Content-based filtering |
en |
dc.subject.other |
Hybrid systems |
en |
dc.subject.other |
Recommenders |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
A hybrid movie recommender system based on neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218213007003540 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218213007003540 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Recommender systems offer a solution to the problem of successful information search in the knowledge reservoirs of the Internet by providing individualized recommendations. Content-based and Collaborative Filtering are usually applied to predict recommendations. A combination of the results of the above techniques is used in this work to construct a system that provides precise recommendations concerning movies. The content filtering part of the system is based on trained neural networks representing individual user preferences. Filtering results are combined using Boolean and fuzzy aggregation operators. The proposed hybrid system was tested on the MovieLens data yielding high accuracy predictions. © World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal on Artificial Intelligence Tools |
en |
dc.identifier.doi |
10.1142/S0218213007003540 |
en |
dc.identifier.isi |
ISI:000251390300002 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
771 |
en |
dc.identifier.epage |
792 |
en |