HEAL DSpace

A management scheme for distributed cross-layer reconfigurations in the context of cognitive B3G infrastructures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimitrakopoulos, G en
dc.contributor.author Tsagkaris, K en
dc.contributor.author Demestichas, K en
dc.contributor.author Adamopoulou, E en
dc.contributor.author Demestichas, P en
dc.date.accessioned 2014-03-01T01:25:41Z
dc.date.available 2014-03-01T01:25:41Z
dc.date.issued 2007 en
dc.identifier.issn 0140-3664 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17727
dc.subject Autonomic computing en
dc.subject B3G wireless infrastructures en
dc.subject Bayesian networks en
dc.subject Cognitive networks en
dc.subject Cross-layer optimization en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Algorithms en
dc.subject.other Bayesian networks en
dc.subject.other Distributed computer systems en
dc.subject.other Management science en
dc.subject.other Mobile computing en
dc.subject.other Network protocols en
dc.subject.other Autonomic computing en
dc.subject.other B3G wireless infrastructures en
dc.subject.other Cognitive networks en
dc.subject.other Cross-layer optimization en
dc.subject.other Cognitive systems en
dc.title A management scheme for distributed cross-layer reconfigurations in the context of cognitive B3G infrastructures en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.comcom.2007.09.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.comcom.2007.09.011 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Current research efforts in wireless communications are targeted at the evolution of B3G (Beyond the 3rd Generation) wireless infrastructures. The operation of B3G infrastructures envisions dynamic adaptations to external stimuli, which can be facilitated through the exploitation of cognitive networking potentials. Cognitive networks dispose mechanisms for dynamically selecting their configuration (algorithms and parameter values, at different layers of the protocol stack), through appropriate management functionality that takes into account the context of operation (environment characteristics and requirements), profiles, goals, policies and knowledge that derives from previous experience. This paper focuses on such management functionality and it addresses a problem, dealing with ""Distributed, Cross-Layer Reconfigurations"" (DCLR), which aims at assessing and selecting the most appropriate configuration per network element in a cognitive network. In essence, this work contributes in four main areas. First, a fully distributed formulation and solution to the DCLR problem is provided, which is important for the management of a particular reconfigurable element in a cognitive context. Second, robust learning and adaptation, strategies are proposed, for estimating and gaining knowledge of the performance potentials of alternate reconfigurations. Third, a computationally efficient solution to the problem of exploiting the performance potentials of reconfigurations is provided, in order to rate reconfigurations and finally select the best ones. Finally, results that expose the behaviour and efficiency of the proposed schemes, are presented. © 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Computer Communications en
dc.identifier.doi 10.1016/j.comcom.2007.09.011 en
dc.identifier.isi ISI:000252533700031 en
dc.identifier.volume 30 en
dc.identifier.issue 18 en
dc.identifier.spage 3807 en
dc.identifier.epage 3822 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής