HEAL DSpace

A method for optimizing process parameters in layer-based rapid prototyping

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vosniakos, G-C en
dc.contributor.author Maroulis, T en
dc.contributor.author Pantelis, D en
dc.date.accessioned 2014-03-01T01:25:42Z
dc.date.available 2014-03-01T01:25:42Z
dc.date.issued 2007 en
dc.identifier.issn 0954-4054 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17730
dc.subject Genetic algorithms en
dc.subject Neural networks en
dc.subject Optimization en
dc.subject Rapid prototyping en
dc.subject.classification Engineering, Manufacturing en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Approximation theory en
dc.subject.other Genetic algorithms en
dc.subject.other Neural networks en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Layer-based prototyping en
dc.subject.other Optimization problem en
dc.subject.other Optimizing process parameters en
dc.subject.other Process parameters en
dc.subject.other Rapid prototyping en
dc.title A method for optimizing process parameters in layer-based rapid prototyping en
heal.type journalArticle en
heal.identifier.primary 10.1243/09544054JEM815 en
heal.identifier.secondary http://dx.doi.org/10.1243/09544054JEM815 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In layer-based rapid prototyping, a volumetric object is approximated as a pile of slices with vertical walls. Process parameter selection in layer-based prototyping is a multicriteria multiparameter optimization problem. A number of criteria may be used for assessing the prototype's quality. Volumetric accuracy of shape approximation and building time are just two criteria taken in this work as an example. Criteria depend on process parameters, most commonly in a mutually contradictory manner. Model orientation and slice thickness constitute the minimum of process parameters to be considered, but others may also be added. For this reason, a neural network is used, trained by a number of input-output vectors, when analytical formulae representing the dependency of criteria on process parameters are not possible to develop and/or available numerical models take too long to execute. Neural network meta-models are used in the evaluation (cost) function of a genetic algorithm, each representing a particular criterion, and criteria are weighted according to the user's particular view. A case study is presented, referring to a wax model prototyping machine in which a particular tree for investment casting is built. A new criterion for assessing the quality of shape approximation is introduced, namely the local volumetric error per slice. © IMechE 2007. en
heal.publisher PROFESSIONAL ENGINEERING PUBLISHING LTD en
heal.journalName Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture en
dc.identifier.doi 10.1243/09544054JEM815 en
dc.identifier.isi ISI:000249899600006 en
dc.identifier.volume 221 en
dc.identifier.issue 8 en
dc.identifier.spage 1329 en
dc.identifier.epage 1340 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής