dc.contributor.author |
Gerolymos, N |
en |
dc.contributor.author |
Gazetas, G |
en |
dc.date.accessioned |
2014-03-01T01:25:42Z |
|
dc.date.available |
2014-03-01T01:25:42Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0267-7261 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17735 |
|
dc.subject |
Excess pore-water pressure |
en |
dc.subject |
Grain crushing |
en |
dc.subject |
Landslide evolution |
en |
dc.subject |
Nikawa landslide |
en |
dc.subject |
Particle breakage |
en |
dc.subject |
Seismic triggering |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Compressive stress |
en |
dc.subject.other |
Constitutive models |
en |
dc.subject.other |
Pore pressure |
en |
dc.subject.other |
Seismic response |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Shear bands |
en |
dc.subject.other |
Soil liquefaction |
en |
dc.subject.other |
Stress-strain curves |
en |
dc.subject.other |
Grain crushing |
en |
dc.subject.other |
Particle breakage |
en |
dc.subject.other |
Sliding-surface liquefaction |
en |
dc.subject.other |
Landslides |
en |
dc.subject.other |
cyclic loading |
en |
dc.subject.other |
deformation mechanism |
en |
dc.subject.other |
displacement |
en |
dc.subject.other |
dynamic analysis |
en |
dc.subject.other |
landslide |
en |
dc.subject.other |
liquefaction |
en |
dc.subject.other |
pore pressure |
en |
dc.subject.other |
porewater |
en |
dc.subject.other |
rigidity |
en |
dc.subject.other |
sensitivity analysis |
en |
dc.subject.other |
shear |
en |
dc.subject.other |
sliding |
en |
dc.subject.other |
stress-strain relationship |
en |
dc.subject.other |
Asia |
en |
dc.subject.other |
Eurasia |
en |
dc.subject.other |
Far East |
en |
dc.subject.other |
Honshu |
en |
dc.subject.other |
Hyogo |
en |
dc.subject.other |
Japan |
en |
dc.subject.other |
Kinki |
en |
dc.subject.other |
Kobe |
en |
dc.title |
A model for grain-crushing-induced landslides-Application to Nikawa, Kobe 1995 |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.soildyn.2007.01.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.soildyn.2007.01.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
A novel method is developed, motivated by one of the mysteries of the Hyogoken-Nambu (Kobe): the Nikawa landslide. To this end, prompted by the hypothesis of "sliding-surface liquefaction" advocated by Sassa [Development of a new cyclic loading ring shear apparatus to study earthquake-induced-landslides. Report for grant-in-aid for development of scientific research by the Ministry on Education, Science and Culture, Japan (project no. 03556021), 1994, p. 1-106; Keynote lecture: access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring shear apparatus. In: Proceedings of the sixth international symposium on landslides, 1992. In: Landslides, vol. 3. Balkema: Rotterdam; 1995. p. 1919-39], a dynamic analysis of the early stages of an earth slide is presented considering two mechanically coupled sub-structures: (a) the rapidly deforming shear band at the base of the slide and (b) the accelerating sliding mass modeled as a rigid body. The proposed model for sliding is based on: (i) the concept of high pore-water pressure generation by grain crushing along the sliding surface (proposed by Sassa et al. in 1995), (ii) an experimental model developed by Hardin [Crushing of soil particles. J Geotech Eng 1985; 111(10): 1177-92] for crushing of soil particles under compression and shear, expressed with a set of developed equations governing the mechanism of breakage, and (iii) the hysteretic stress-strain Bouc-Wen-type constitutive model coupled with the Coulomb friction law. An attempt is made to adjust the model parameters to Sassa's experimental data in ring-shear tests. The method leads to a reasonable prediction of the large displacement of the Nikawa landslide. A sensitivity analysis is also carried out for the influence of key model parameters (e.g. shape, crushing hardness, void ratio, grain size distribution, effective normal stress) on the pore-pressure rise due to particle breakage. (c) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Soil Dynamics and Earthquake Engineering |
en |
dc.identifier.doi |
10.1016/j.soildyn.2007.01.003 |
en |
dc.identifier.isi |
ISI:000246632700001 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
803 |
en |
dc.identifier.epage |
817 |
en |