dc.contributor.author |
Papageorgiou, EH |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:25:43Z |
|
dc.date.available |
2014-03-01T01:25:43Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0022-1236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17739 |
|
dc.subject |
Eigenvalues of the p-Laplacian |
en |
dc.subject |
Multiple nontrivial solutions |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject |
Superlinear nonlinearity |
en |
dc.subject |
Upper and lower solutions |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
QUASILINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
SOBOLEV |
en |
dc.title |
A multiplicity theorem for problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jfa.2006.11.015 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jfa.2006.11.015 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We consider a nonlinear elliptic problem driven by the p-Laplacian, with a parameter, lambda is an element of R and a non-linearity exhibiting a superlinear behavior both at zero and at infinity. We show that if the parameter; is bigger than lambda(2) = the second eigenvalue of (-Delta(p), W-0(1.p) (Z)), then the problem has at least three nontrivial solutions. Our approach combines the method of upper-lower solutions with variational techniques involving the Second Deformation Theorem. The multiplicity result that we prove extends an earlier semilinear (i.e. p = 2) result due to Struwe [M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990]. (c) 2006 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Functional Analysis |
en |
dc.identifier.doi |
10.1016/j.jfa.2006.11.015 |
en |
dc.identifier.isi |
ISI:000244802600003 |
en |
dc.identifier.volume |
244 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
63 |
en |
dc.identifier.epage |
77 |
en |