dc.contributor.author |
Barletta, G |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:25:43Z |
|
dc.date.available |
2014-03-01T01:25:43Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0925-5001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17740 |
|
dc.subject |
Degree theory |
en |
dc.subject |
Lagrange multiplier rule |
en |
dc.subject |
Local minimizer |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
Nonsmooth potential |
en |
dc.subject |
P-Laplacian |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Laplace equation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Degree theory |
en |
dc.subject.other |
Hemivariational inequality |
en |
dc.subject.other |
Nonlinear Neumann |
en |
dc.subject.other |
Theorem proving |
en |
dc.title |
A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10898-007-9142-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10898-007-9142-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). By combining variational with degree theoretic techniques, we prove a multiplicity theorem. In the process, we also prove a result of independent interest relating W1,p and Cn1 local minimizers, of a nonsmooth locally Lipschitz functional. © 2007 Springer Science+Business Media, Inc. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Global Optimization |
en |
dc.identifier.doi |
10.1007/s10898-007-9142-4 |
en |
dc.identifier.isi |
ISI:000250064900003 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
365 |
en |
dc.identifier.epage |
392 |
en |