A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Barletta, G en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:25:43Z
dc.date.available 2014-03-01T01:25:43Z
dc.date.issued 2007 en
dc.identifier.issn 0925-5001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17740
dc.subject Degree theory en
dc.subject Lagrange multiplier rule en
dc.subject Local minimizer en
dc.subject Neumann problem en
dc.subject Nonsmooth potential en
dc.subject P-Laplacian en
dc.subject.classification Operations Research & Management Science en
dc.subject.classification Mathematics, Applied en
dc.subject.other Differential equations en
dc.subject.other Function evaluation en
dc.subject.other Laplace equation en
dc.subject.other Problem solving en
dc.subject.other Degree theory en
dc.subject.other Hemivariational inequality en
dc.subject.other Nonlinear Neumann en
dc.subject.other Theorem proving en
dc.title A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10898-007-9142-4 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10898-007-9142-4 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). By combining variational with degree theoretic techniques, we prove a multiplicity theorem. In the process, we also prove a result of independent interest relating W1,p and Cn1 local minimizers, of a nonsmooth locally Lipschitz functional. © 2007 Springer Science+Business Media, Inc. en
heal.publisher SPRINGER en
heal.journalName Journal of Global Optimization en
dc.identifier.doi 10.1007/s10898-007-9142-4 en
dc.identifier.isi ISI:000250064900003 en
dc.identifier.volume 39 en
dc.identifier.issue 3 en
dc.identifier.spage 365 en
dc.identifier.epage 392 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record