HEAL DSpace

A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Melagraki, G en
dc.contributor.author Afantitis, A en
dc.contributor.author Sarimveis, H en
dc.contributor.author Koutentis, PA en
dc.contributor.author Markopoulos, J en
dc.contributor.author Igglessi-Markopoulou, O en
dc.date.accessioned 2014-03-01T01:25:45Z
dc.date.available 2014-03-01T01:25:45Z
dc.date.issued 2007 en
dc.identifier.issn 1610-2940 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17747
dc.subject Lower critical solution temperature en
dc.subject Molecular de scriptors en
dc.subject QSPR en
dc.subject.classification Biochemistry & Molecular Biology en
dc.subject.classification Biophysics en
dc.subject.classification Chemistry, Multidisciplinary en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other polymer en
dc.subject.other solvent en
dc.subject.other accuracy en
dc.subject.other article en
dc.subject.other chemical model en
dc.subject.other correlation analysis en
dc.subject.other data base en
dc.subject.other elimination reaction en
dc.subject.other mathematical analysis en
dc.subject.other physical chemistry en
dc.subject.other prediction en
dc.subject.other priority journal en
dc.subject.other quantitative structure property relation en
dc.subject.other regression analysis en
dc.subject.other temperature en
dc.subject.other validation process en
dc.title A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00894-006-0125-z en
heal.identifier.secondary http://dx.doi.org/10.1007/s00894-006-0125-z en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this study, we present a new model that has been developed for the prediction of θ, (lower critical solution temperature) using a database of 169 data points that include 12 polymers and 67 solvents. For the characterization of polymer and solvent molecules, a number of molecular descriptors (topological, physicochemical, steric and electronic) were examined. The best subset of descriptors was selected using the elimination selection-stepwise regression method. Multiple linear regression (MLR) served as the statistical tool to explore the potential correlation among the molecular descriptors and the experimental data. The prediction accuracy of the MLR model was tested using the leave-one-out cross-validation procedure, validation through an external test set and the Y-randomization evaluation technique. The domain of applicability was finally determined to identify the reliable predictions. © Springer-Verlag 2006. en
heal.publisher SPRINGER en
heal.journalName Journal of Molecular Modeling en
dc.identifier.doi 10.1007/s00894-006-0125-z en
dc.identifier.isi ISI:000242326700007 en
dc.identifier.volume 13 en
dc.identifier.issue 1 en
dc.identifier.spage 55 en
dc.identifier.epage 64 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής