HEAL DSpace

Adjusted fair scheduling and non-linear workload prediction for QoS guarantees in grid computing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.contributor.author Litke, A en
dc.contributor.author Panagakis, A en
dc.contributor.author Varvarigou, T en
dc.contributor.author Varvarigos, E en
dc.date.accessioned 2014-03-01T01:25:52Z
dc.date.available 2014-03-01T01:25:52Z
dc.date.issued 2007 en
dc.identifier.issn 0140-3664 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17785
dc.subject Fair grid scheduling en
dc.subject Grid-enabled networking middleware en
dc.subject Non-linear workload modeling en
dc.subject QoS requirements en
dc.subject Workload prediction en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Computer software en
dc.subject.other Middleware en
dc.subject.other Nonlinear systems en
dc.subject.other Quality of service en
dc.subject.other Fair grid scheduling en
dc.subject.other Grid-enabled networking middleware en
dc.subject.other Non-linear workload modeling en
dc.subject.other QoS requirements en
dc.subject.other Workload prediction en
dc.subject.other Distributed computer systems en
dc.title Adjusted fair scheduling and non-linear workload prediction for QoS guarantees in grid computing en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.comcom.2005.11.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.comcom.2005.11.013 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, we propose an efficient non-linear task workload prediction mechanism incorporated with a fair scheduling algorithm for task allocation and resource management in Grid computing. Workload prediction is accomplished in a Grid middleware approach using a non-linear model expressed as a series of finite known functional components using concepts of functional analysis. The coefficient of functional components are obtained using a training set of appropriate samples, the pairs of which are estimated based on a runtime estimation model relied on a least squares approximation scheme. The advantages of the proposed non-linear task workload prediction scheme is that (i) it is not constrained by analysis of source code (analytical methods), which is practically impossible to be implemented in complicated real-life applications or (ii) it does not exploit the variations of the workload statistics as the statistical approaches does. The predicted task workload is then exploited by a novel scheduling algorithm, enabling a fair Quality of Service oriented resource management so that some tasks are not favored against others. The algorithm is based on estimating the adjusted fair completion times of the tasks for task order selection and on an earliest completion time strategy for the grid resource assignment. Experimental results and comparisons with traditional scheduling approaches as implemented in the framework of European Union funded research projects GRIA and GRIDLAB grid infrastructures have revealed the outperformance of the proposed method. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Computer Communications en
dc.identifier.doi 10.1016/j.comcom.2005.11.013 en
dc.identifier.isi ISI:000244222500002 en
dc.identifier.volume 30 en
dc.identifier.issue 3 en
dc.identifier.spage 499 en
dc.identifier.epage 515 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής