HEAL DSpace

An approach for optimizing pavement design - redesign parameters in PPP projects

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Loizos, A en
dc.contributor.author Karlaftis, AG en
dc.contributor.author Karlaftis, MG en
dc.date.accessioned 2014-03-01T01:25:53Z
dc.date.available 2014-03-01T01:25:53Z
dc.date.issued 2007 en
dc.identifier.issn 1573-2479 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17793
dc.subject Neural networks en
dc.subject Pavement engineering en
dc.subject Tensile stresses en
dc.subject Unbound materials en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Artificial intelligence en
dc.subject.other Correlation methods en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Elasticity en
dc.subject.other Error analysis en
dc.subject.other Internet protocols en
dc.subject.other Models en
dc.subject.other Neural networks en
dc.subject.other Optimization en
dc.subject.other Pavement overlays en
dc.subject.other Roads and streets en
dc.subject.other Athens , Greece en
dc.subject.other Back analysis (BA) en
dc.subject.other BOT projects en
dc.subject.other Design parameters. en
dc.subject.other Elasticity modulus en
dc.subject.other External factors en
dc.subject.other Falling weight deflectometer (FWD) en
dc.subject.other Granular layers en
dc.subject.other Modulus of elasticity (MOE) en
dc.subject.other Non linear phenomenon en
dc.subject.other Parameter values en
dc.subject.other Pavement design en
dc.subject.other Pavement materials en
dc.subject.other Physical phenomenon en
dc.subject.other Practical implications en
dc.subject.other Predicted values en
dc.subject.other Relative estimation en
dc.subject.other Unbound materials en
dc.subject.other Widespread use en
dc.subject.other Pavements en
dc.title An approach for optimizing pavement design - redesign parameters in PPP projects en
heal.type journalArticle en
heal.identifier.primary 10.1080/15732470500365554 en
heal.identifier.secondary http://dx.doi.org/10.1080/15732470500365554 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Modeling the elasticity modulus of unbound granular pavement materials has attracted significant research interest because of its importance in pavement design particularly in PPP/BOT projects. These efforts have been hampered by three factors: (i) inability to capture the correlations between the asphalt and granular layers and the subgrade, (ii) inadequate modeling of the effects of external factors on the elasticity modulus of unbound materials, and (iii) widespread use of linear statistical relationships to model a complex and non-linear phenomenon. In this paper genetically optimized neural networks and falling weight deflectometer (FWD) back-analysis results from a newly constructed BOT project in Athens, Greece, are employed in order to evaluate pavement section design parameters. It is shown that parameter values adopted during design do not co-inside with those observed from the back-analysis studies. Further, the results indicate that the relative estimation error for the modulus of elasticity of the unbound material does not exceed 25%, while the correlation between actual and predicted values is 86%, both suggesting that the proposed approach models the physical phenomenon adequately, a finding with important practical implications particularly in PPP projects. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Structure and Infrastructure Engineering en
dc.identifier.doi 10.1080/15732470500365554 en
dc.identifier.isi ISI:000247064500006 en
dc.identifier.volume 3 en
dc.identifier.issue 3 en
dc.identifier.spage 257 en
dc.identifier.epage 265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής