dc.contributor.author |
Xenidou, TC |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.contributor.author |
Markatos, NC |
en |
dc.contributor.author |
Samelor, D |
en |
dc.contributor.author |
Senocq, F |
en |
dc.contributor.author |
PrudHomme, N |
en |
dc.contributor.author |
Vahlas, C |
en |
dc.date.accessioned |
2014-03-01T01:25:53Z |
|
dc.date.available |
2014-03-01T01:25:53Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0257-8972 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17800 |
|
dc.subject |
Aluminum |
en |
dc.subject |
Computational fluid dynamics |
en |
dc.subject |
DMEAA |
en |
dc.subject |
MOCVD process |
en |
dc.subject.classification |
Materials Science, Coatings & Films |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.subject.other |
Aluminum coatings |
en |
dc.subject.other |
Dimethylethylamine alane |
en |
dc.subject.other |
Metallorganic chemical vapor deposition |
en |
dc.subject.other |
Aluminum |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Finite volume method |
en |
dc.subject.other |
Hydrodynamics |
en |
dc.subject.other |
Metallorganic chemical vapor deposition |
en |
dc.subject.other |
Thermodynamic properties |
en |
dc.title |
An experimental and computational analysis of a MOCVD process for the growth of Al films using DMEAA |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.surfcoat.2007.04.080 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.surfcoat.2007.04.080 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The analysis of a metal-organic chemical vapor deposition (MOCVD) process is performed by combining computational fluid dynamics (CFD) simulations and experimental measurements. The analysis is applied to a vertical, cold-wall reactor, where aluminum coatings are grown from dimethylethylamine alane (DMEAA), under low-pressure conditions. A two-dimensional model, based on the finite-volume method, is developed to predict the thermal and hydrodynamic characteristics of the flow within the MOCVD reactor, and the simulation results are compared with experimental data. It is shown that the computational predictions of the growth rates are in fair agreement with the experimental measurements. (c) 2007 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Surface and Coatings Technology |
en |
dc.identifier.doi |
10.1016/j.surfcoat.2007.04.080 |
en |
dc.identifier.isi |
ISI:000249340400014 |
en |
dc.identifier.volume |
201 |
en |
dc.identifier.issue |
22-23 SPEC. ISS. |
en |
dc.identifier.spage |
8868 |
en |
dc.identifier.epage |
8872 |
en |