dc.contributor.author |
Angelopoulos, JD |
en |
dc.contributor.author |
Kanonakis, K |
en |
dc.contributor.author |
Koukouvakis, G |
en |
dc.contributor.author |
Leligou, HC |
en |
dc.contributor.author |
Matrakidis, C |
en |
dc.contributor.author |
Orphanoudakis, TG |
en |
dc.contributor.author |
Stavdas, A |
en |
dc.date.accessioned |
2014-03-01T01:25:54Z |
|
dc.date.available |
2014-03-01T01:25:54Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0733-8724 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17806 |
|
dc.subject |
All-optical networks |
en |
dc.subject |
Core networks |
en |
dc.subject |
Optical burst switching (OBS) |
en |
dc.subject |
Statistical multiplexing |
en |
dc.subject |
Wavelength-division-multiplexing (WDM) networking |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Optics |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Fiber optic networks |
en |
dc.subject.other |
Multiplexing |
en |
dc.subject.other |
Optical communication |
en |
dc.subject.other |
Optical switches |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Switching theory |
en |
dc.subject.other |
All-optical networks |
en |
dc.subject.other |
Core networks |
en |
dc.subject.other |
Optical burst switching (OBS) |
en |
dc.subject.other |
Optical network architecture |
en |
dc.subject.other |
Wavelength division multiplexing |
en |
dc.title |
An optical network architecture with distributed switching inside node clusters features improved loss, efficiency, and cost |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/JLT.2007.893034 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/JLT.2007.893034 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The novel core network architecture presented in this paper realizes distributed all-optical switching of payload by partitioning the network into a number of geographically limited domains, where two-way reservations are effective. Thus, inside each domain, loss is eliminated, while traffic from many nodes can be aggregated into single bursts, improving efficiency. Clustered nodes contribute contiguous optical slots, which are marshaled into composite optical frames destined for other clusters, under the guidance of a reservation-based control protocol. The lossless aggregation of traffic from several core nodes allows the use of cost-effective bufferless all-optical transport among the domains with electrical buffers employed at the periphery of the system. The end result is a triple improvement in loss probabilities, efficiency, and cost. This is achieved by exploiting three features of the architecture: the distributed switching functionality (as in early LANs when centralized switching was expensive), localized reservations (avoiding the intolerable delays of end-to-end reservations), and a reduced number of source-destination pairs (by means of node clustering into reservation domains). © 2007 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
Journal of Lightwave Technology |
en |
dc.identifier.doi |
10.1109/JLT.2007.893034 |
en |
dc.identifier.isi |
ISI:000246411600004 |
en |
dc.identifier.volume |
25 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1138 |
en |
dc.identifier.epage |
1146 |
en |