dc.contributor.author |
Pavlopoulos, S |
en |
dc.contributor.author |
Thireou, T |
en |
dc.contributor.author |
Kontaxakis, G |
en |
dc.contributor.author |
Santos, A |
en |
dc.date.accessioned |
2014-03-01T01:25:54Z |
|
dc.date.available |
2014-03-01T01:25:54Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1475-925X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17809 |
|
dc.subject |
Data Reduction |
en |
dc.subject |
Data Reduction Techniques |
en |
dc.subject |
Image Sequence |
en |
dc.subject |
Independent Component Analysis |
en |
dc.subject |
Kinetic Model |
en |
dc.subject |
Kinetics |
en |
dc.subject |
Positron Emission Tomography |
en |
dc.subject |
Principal Component Analysis |
en |
dc.subject |
Similarity Measure |
en |
dc.subject |
Standardized Uptake Value |
en |
dc.subject |
Temporal Properties |
en |
dc.subject |
Visual Analysis |
en |
dc.subject |
Arterial Input Function |
en |
dc.subject |
Time Activity Curve |
en |
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.other |
Cubed sum coefficient similarity measure |
en |
dc.subject.other |
Feature characterization |
en |
dc.subject.other |
Tracer kinetic method |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Mapping |
en |
dc.subject.other |
Oncology |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Positron emission tomography |
en |
dc.subject.other |
fluorodeoxyglucose f 18 |
en |
dc.subject.other |
tracer |
en |
dc.subject.other |
diagnostic agent |
en |
dc.subject.other |
radiopharmaceutical agent |
en |
dc.subject.other |
article |
en |
dc.subject.other |
clinical article |
en |
dc.subject.other |
clinical trial |
en |
dc.subject.other |
colorectal tumor |
en |
dc.subject.other |
contrast enhancement |
en |
dc.subject.other |
diagnostic accuracy |
en |
dc.subject.other |
diagnostic imaging |
en |
dc.subject.other |
diagnostic value |
en |
dc.subject.other |
histopathology |
en |
dc.subject.other |
human |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
image enhancement |
en |
dc.subject.other |
image quality |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
positron emission tomography |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
artificial intelligence |
en |
dc.subject.other |
computer assisted diagnosis |
en |
dc.subject.other |
methodology |
en |
dc.subject.other |
neoplasm |
en |
dc.subject.other |
principal component analysis |
en |
dc.subject.other |
reproducibility |
en |
dc.subject.other |
scintiscanning |
en |
dc.subject.other |
sensitivity and specificity |
en |
dc.subject.other |
statistical analysis |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Artificial Intelligence |
en |
dc.subject.other |
Data Interpretation, Statistical |
en |
dc.subject.other |
Fluorodeoxyglucose F18 |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Enhancement |
en |
dc.subject.other |
Image Interpretation, Computer-Assisted |
en |
dc.subject.other |
Neoplasms |
en |
dc.subject.other |
Positron-Emission Tomography |
en |
dc.subject.other |
Principal Component Analysis |
en |
dc.subject.other |
Radiopharmaceuticals |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.title |
Analysis and interpretation of dynamic FDG PET oncological studies using data reduction techniques |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1186/1475-925X-6-36 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1186/1475-925X-6-36 |
en |
heal.identifier.secondary |
36 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Background: Dynamic positron emission tomography studies produce a large amount of image data, from which clinically useful parametric information can be extracted using tracer kinetic methods. Data reduction methods can facilitate the initial interpretation and visual analysis of these large image sequences and at the same time can preserve important information and allow for basic feature characterization. Methods: We have applied principal component analysis to provide high-contrast parametric image sets of lower dimensions than the original data set separating structures based on their kinetic characteristics. Our method has the potential to constitute an alternative quantification method, independent of any kinetic model, and is particularly useful when the retrieval of the arterial input function is complicated. In independent component analysis images, structures that have different kinetic characteristics are assigned opposite values, and are readily discriminated. Furthermore, novel similarity mapping techniques are proposed, which can summarize in a single image the temporal properties of the entire image sequence according to a reference region. Results: Using our new cubed sum coefficient similarity measure, we have shown that structures with similar time activity curves can be identified, thus facilitating the detection of lesions that are not easily discriminated using the conventional method employing standardized uptake values. © 2007 Pavlopoulos et al; licensee BioMed Central Ltd. |
en |
heal.publisher |
BIOMED CENTRAL LTD |
en |
heal.journalName |
BioMedical Engineering Online |
en |
dc.identifier.doi |
10.1186/1475-925X-6-36 |
en |
dc.identifier.isi |
ISI:000252922700001 |
en |
dc.identifier.volume |
6 |
en |