HEAL DSpace

Application of artificial neural network methods for the lightning performance evaluation of Hellenic high voltage transmission lines

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ekonomou, L en
dc.contributor.author Gonos, IF en
dc.contributor.author Iracleous, DP en
dc.contributor.author Stathopulos, IA en
dc.date.accessioned 2014-03-01T01:25:56Z
dc.date.available 2014-03-01T01:25:56Z
dc.date.issued 2007 en
dc.identifier.issn 0378-7796 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17822
dc.subject Backflashover failure rate en
dc.subject Feed-forward neural networks en
dc.subject High voltage transmission lines en
dc.subject Lightning performance en
dc.subject Radial basis function neural networks en
dc.subject Shielding failure rate en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Computer simulation en
dc.subject.other Electric potential en
dc.subject.other Electric power utilization en
dc.subject.other Learning algorithms en
dc.subject.other Lightning en
dc.subject.other Neural networks en
dc.subject.other Transfer functions en
dc.subject.other Backflashover failure rate en
dc.subject.other Feed-forward neural networks en
dc.subject.other High voltage transmission lines en
dc.subject.other Lightning performances en
dc.subject.other Radial basis function neural networks en
dc.subject.other Shielding failure rate en
dc.subject.other Electric lines en
dc.title Application of artificial neural network methods for the lightning performance evaluation of Hellenic high voltage transmission lines en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.epsr.2006.01.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.epsr.2006.01.005 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Feed-forward (FF) artificial neural networks (ANN) and radial basis function (RBF) ANN methods were addressed for evaluating the lightning performance of high voltage transmission lines. Several structures, learning algorithms and transfer functions were tested in order to produce a model with the best generalizing ability. Actual input and output data, collected from operating Hellenic high voltage transmission lines, as well as simulated output data were used in the training, validation and testing process. The aims of the paper are to describe in detail and compare the proposed FF and RBF ANN models, to state their advantages and disadvantages and to present results obtained by their application on operating Hellenic transmission lines of 150 kV and 400 kV. The ANN results are also compared with results obtained using conventional methods and real records of outage rate showing a quite satisfactory agreement. The proposed ANN methods can be used by electric power utilities as useful tools for the design of electric power systems, alternative to the conventional analytical methods. (C) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Electric Power Systems Research en
dc.identifier.doi 10.1016/j.epsr.2006.01.005 en
dc.identifier.isi ISI:000240907500006 en
dc.identifier.volume 77 en
dc.identifier.issue 1 en
dc.identifier.spage 55 en
dc.identifier.epage 63 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής