dc.contributor.author |
Chrysafinos, K |
en |
dc.date.accessioned |
2014-03-01T01:25:56Z |
|
dc.date.available |
2014-03-01T01:25:56Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0006-3835 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17829 |
|
dc.subject |
Discontinuous Galerkin method |
en |
dc.subject |
Error estimates |
en |
dc.subject |
Minimal regularity |
en |
dc.subject |
Parabolic integro-differential equations |
en |
dc.subject |
Wavelet compression techniques |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
FINITE-ELEMENT METHODS |
en |
dc.subject.other |
NUMERICAL-SOLUTION |
en |
dc.subject.other |
CONVERGENCE-RATES |
en |
dc.title |
Approximations of parabolic integro-differential equations using wavelet-Galerkin compression techniques |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10543-007-0141-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10543-007-0141-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Error estimates for Galerkin discretizations of parabolic integro-differential equations are presented under minimal regularity assumptions. The analysis is applicable in case that the full Galerkin matrix A associated to the integral operator is replaced by a compressed ""sparse"" matrix à using wavelet basis techniques. In particular, a semi-discrete (in space) scheme and a fully-discrete scheme which is discontinuous in time but conforming in space are analyzed. © 2007 Springer Science + Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
BIT Numerical Mathematics |
en |
dc.identifier.doi |
10.1007/s10543-007-0141-0 |
en |
dc.identifier.isi |
ISI:000249502700002 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
487 |
en |
dc.identifier.epage |
505 |
en |