HEAL DSpace

Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stefanou, G en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:25:57Z
dc.date.available 2014-03-01T01:25:57Z
dc.date.issued 2007 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17840
dc.subject Gaussian stochastic field en
dc.subject Karhunen-Loève expansion en
dc.subject Spectral representation en
dc.subject Wavelet-Galerkin scheme en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Galerkin methods en
dc.subject.other Integral equations en
dc.subject.other Mathematical models en
dc.subject.other Random processes en
dc.subject.other Statistical methods en
dc.subject.other Wavelet analysis en
dc.subject.other Gaussian stochastic field en
dc.subject.other Spectral representation en
dc.subject.other Wavelet-Galerkin scheme en
dc.subject.other Gaussian distribution en
dc.subject.other Galerkin methods en
dc.subject.other Gaussian distribution en
dc.subject.other Integral equations en
dc.subject.other Mathematical models en
dc.subject.other Random processes en
dc.subject.other Statistical methods en
dc.subject.other Wavelet analysis en
dc.title Assessment of spectral representation and Karhunen-Loève expansion methods for the simulation of Gaussian stochastic fields en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cma.2007.01.009 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cma.2007.01.009 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract From the wide variety of methods developed for the simulation of Gaussian stochastic processes and fields, two are most often used in applications: the spectral representation method and the Karhunen-Lo&ve (K-L) expansion. In this paper, an in-depth assessment on the capabilities of the two methods is presented. The spectral representation method expands the stochastic field as a sum of trigonometric functions with random phase angles and/or amplitudes. The version having only random phase angles is used in this work. A wavelet-Galerkin scheme is adopted for the efficient numerical solution of the Fredholm integral equation appearing in the K-L expansion. A one-dimensional homogeneous Gaussian random field with two types of autocovariance function, exponential and square exponential, is used as the benchmark test. The accuracy achieved and the computational effort required by the K-L expansion and the spectral representation for the simulation of the stochastic field are investigated. The accuracy obtained by the two approaches is examined by comparing their ability to produce sample functions that match the target correlation structure and the Gaussian probability distribution or, alternatively, its low order statistical moments (mean, variance and skewness). (c) 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/j.cma.2007.01.009 en
dc.identifier.isi ISI:000246126700013 en
dc.identifier.volume 196 en
dc.identifier.issue 21-24 en
dc.identifier.spage 2465 en
dc.identifier.epage 2477 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής