dc.contributor.author |
Kavallaris, NI |
en |
dc.contributor.author |
Lacey, AA |
en |
dc.contributor.author |
Nikolopoulos, CV |
en |
dc.contributor.author |
Voong, C |
en |
dc.date.accessioned |
2014-03-01T01:25:58Z |
|
dc.date.available |
2014-03-01T01:25:58Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0272-4960 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17852 |
|
dc.subject |
Non-local parabolic problems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Linear systems |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Global existence |
en |
dc.subject.other |
Non-local equation modelling |
en |
dc.subject.other |
Friction welding |
en |
dc.title |
Behaviour of a non-local equation modelling linear friction welding |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/imamat/hxm031 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/imamat/hxm031 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
A non-local parabolic equation modelling linear friction welding is studied. The equation applies on the half line and contains a non-linearity of the form f(u)/(∫0∞ f(u)dy)1+a. For f(u) = eu, global existence and convergence to a steady state are proved. Numerical calculations are also carried out for this case and for f(u) = (-u)1/a. © The Author 2007. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications) |
en |
dc.identifier.doi |
10.1093/imamat/hxm031 |
en |
dc.identifier.isi |
ISI:000250681300008 |
en |
dc.identifier.volume |
72 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
597 |
en |
dc.identifier.epage |
616 |
en |