dc.contributor.author |
Georgantopoulou, CG |
en |
dc.contributor.author |
Tsangaris, S |
en |
dc.date.accessioned |
2014-03-01T01:25:59Z |
|
dc.date.available |
2014-03-01T01:25:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17857 |
|
dc.subject |
Cartesian grid refinement |
en |
dc.subject |
incompressible flow |
en |
dc.subject |
Navier Stokes |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
NAVIER-STOKES EQUATIONS |
en |
dc.subject.other |
ADAPTIVE PROJECTION METHOD |
en |
dc.subject.other |
EULER EQUATIONS |
en |
dc.subject.other |
CARTESIAN GRIDS |
en |
dc.subject.other |
ALGORITHM |
en |
dc.subject.other |
DYNAMICS |
en |
dc.title |
Block mesh refinement for incompressible flows in curvilinear domains |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apm.2006.08.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apm.2006.08.020 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
A method for the solution of the Navier-Stokes equation for the prediction of flows inside domains of arbitrary shaped bounds by the use of Cartesian grids with block-refinement in space is presented. In order to avoid the complexity of the body fitted numerical grid generation procedure, we use a saw tooth method for the curvilinear geometry approximation. By using block-nested refinement, we achieved the desired geometry Cartesian approximation in order to find an accurate solution of the N-S equations. The method is applied to incompressible laminar flows and is based on a cell-centred approximation. We present the numerical simulation of the flow field for two geometries, driven cavity and stenosed tubes. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single grid algorithm. The Cartesian block refinement algorithm can be used in any complex curvilinear geometry simulation, to accomplish a reduction in memory requirements and the computational time effort. (c) 2006 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
APPLIED MATHEMATICAL MODELLING |
en |
dc.identifier.doi |
10.1016/j.apm.2006.08.020 |
en |
dc.identifier.isi |
ISI:000247868100007 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
2136 |
en |
dc.identifier.epage |
2148 |
en |