dc.contributor.author |
Rapantzikos, K |
en |
dc.contributor.author |
Tsapatsoulis, N |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:25:59Z |
|
dc.date.available |
2014-03-01T01:25:59Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1751-9659 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17858 |
|
dc.subject |
Video Analysis |
en |
dc.subject |
Visual Attention |
en |
dc.subject |
Bottom Up |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Content based retrieval |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Video signal processing |
en |
dc.subject.other |
Computational visual attention (VA) |
en |
dc.subject.other |
Human visual system (HVS) |
en |
dc.subject.other |
Spatiotemporal visual attention |
en |
dc.subject.other |
Video sequences |
en |
dc.subject.other |
Image coding |
en |
dc.title |
Bottom-up spatiotemporal visual attention model for video analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1049/iet-ipr:20060040 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1049/iet-ipr:20060040 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The human visual system (HVS) has the ability to fixate quickly on the most informative (salient) regions of a scene and therefore reducing the inherent visual uncertainty. Computational visual attention (VA) schemes have been proposed to account for this important characteristic of the HVS. A video analysis framework based on a spatiotemporal VA model is presented. A novel scheme has been proposed for generating saliency in video sequences by taking into account both the spatial extent and dynamic evolution of regions. To achieve this goal, a common, image-oriented computational model of saliency-based visual attention is extended to handle spatiotemporal analysis of video in a volumetric framework. The main claim is that attention acts as an efficient preprocessing step to obtain a compact representation of the visual content in the form of salient events/objects. The model has been implemented, and qualitative as well as quantitative examples illustrating its performance are shown. © The Institution of Engineering and Technology 2007. |
en |
heal.publisher |
INST ENGINEERING TECHNOLOGY-IET |
en |
heal.journalName |
IET Image Processing |
en |
dc.identifier.doi |
10.1049/iet-ipr:20060040 |
en |
dc.identifier.isi |
ISI:000249578200016 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
237 |
en |
dc.identifier.epage |
248 |
en |