HEAL DSpace

Bottom-up spatiotemporal visual attention model for video analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rapantzikos, K en
dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:25:59Z
dc.date.available 2014-03-01T01:25:59Z
dc.date.issued 2007 en
dc.identifier.issn 1751-9659 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17858
dc.subject Video Analysis en
dc.subject Visual Attention en
dc.subject Bottom Up en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Computer vision en
dc.subject.other Content based retrieval en
dc.subject.other Mathematical models en
dc.subject.other Video signal processing en
dc.subject.other Computational visual attention (VA) en
dc.subject.other Human visual system (HVS) en
dc.subject.other Spatiotemporal visual attention en
dc.subject.other Video sequences en
dc.subject.other Image coding en
dc.title Bottom-up spatiotemporal visual attention model for video analysis en
heal.type journalArticle en
heal.identifier.primary 10.1049/iet-ipr:20060040 en
heal.identifier.secondary http://dx.doi.org/10.1049/iet-ipr:20060040 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The human visual system (HVS) has the ability to fixate quickly on the most informative (salient) regions of a scene and therefore reducing the inherent visual uncertainty. Computational visual attention (VA) schemes have been proposed to account for this important characteristic of the HVS. A video analysis framework based on a spatiotemporal VA model is presented. A novel scheme has been proposed for generating saliency in video sequences by taking into account both the spatial extent and dynamic evolution of regions. To achieve this goal, a common, image-oriented computational model of saliency-based visual attention is extended to handle spatiotemporal analysis of video in a volumetric framework. The main claim is that attention acts as an efficient preprocessing step to obtain a compact representation of the visual content in the form of salient events/objects. The model has been implemented, and qualitative as well as quantitative examples illustrating its performance are shown. © The Institution of Engineering and Technology 2007. en
heal.publisher INST ENGINEERING TECHNOLOGY-IET en
heal.journalName IET Image Processing en
dc.identifier.doi 10.1049/iet-ipr:20060040 en
dc.identifier.isi ISI:000249578200016 en
dc.identifier.volume 1 en
dc.identifier.issue 2 en
dc.identifier.spage 237 en
dc.identifier.epage 248 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής