HEAL DSpace

Classification methods for random utility models with i.i.d. disturbances under the most probable alternative rule

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalouptsidis, N en
dc.contributor.author Koutroumbas, K en
dc.contributor.author Psaraki, V en
dc.date.accessioned 2014-03-01T01:26:01Z
dc.date.available 2014-03-01T01:26:01Z
dc.date.issued 2007 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17881
dc.subject Decision analysis en
dc.subject Discrete choice models en
dc.subject Logit model en
dc.subject Pattern recognition en
dc.subject Random utility model en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Data reduction en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Pattern recognition en
dc.subject.other Vectors en
dc.subject.other Weibull distribution en
dc.subject.other Discrete choice models en
dc.subject.other Logit model en
dc.subject.other Random utility model en
dc.subject.other Decision theory en
dc.title Classification methods for random utility models with i.i.d. disturbances under the most probable alternative rule en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ejor.2005.11.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ejor.2005.11.004 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper random utility maximization based on maximization of correct classification of the choice decisions over a given data set is considered. It is shown that if the disturbance vector in the random utility model is independent and identically distributed, then preference determination based on the most probable alternative reduces to deterministic utility maximization. As a consequence of the above equivalence, the form of the error distribution (normal, Weibull, uniform etc.) plays no role in the determination of the preferred alternative. Parameter estimation under the most probable alternative rule is carried out using two methods. The first is based on the solution of an appropriately defined system of linear inequalities and the second one is based on the function optimization of a newly proposed function, whose optimum is achieved when the number of correctly classified individuals is maximized. The ability to use these algorithms in the framework of pattern recognition and machine learning is pointed out. Simulations and a real case study involving intercity travel behavior are employed to assess the proposed methods. (c) 2005 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/j.ejor.2005.11.004 en
dc.identifier.isi ISI:000242102800031 en
dc.identifier.volume 176 en
dc.identifier.issue 3 en
dc.identifier.spage 1778 en
dc.identifier.epage 1794 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής