HEAL DSpace

Computational intelligence tools for the prediction of slope performance

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ferentinou, MD en
dc.contributor.author Sakellariou, MG en
dc.date.accessioned 2014-03-01T01:26:02Z
dc.date.available 2014-03-01T01:26:02Z
dc.date.issued 2007 en
dc.identifier.issn 0266-352X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17892
dc.subject Artificial neural networks en
dc.subject Back propagation en
dc.subject Earthquake induced displacements en
dc.subject Kohonen self-organizing maps en
dc.subject Slope stability en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other Acceleration en
dc.subject.other Artificial intelligence en
dc.subject.other Backpropagation algorithms en
dc.subject.other Bayesian networks en
dc.subject.other Geographic information systems en
dc.subject.other Self organizing maps en
dc.subject.other Earthquake induced displacement en
dc.subject.other Soil classification en
dc.subject.other Landslides en
dc.subject.other artificial neural network en
dc.subject.other back propagation en
dc.subject.other Bayesian analysis en
dc.subject.other dynamic analysis en
dc.subject.other estimation method en
dc.subject.other failure mechanism en
dc.subject.other GIS en
dc.subject.other hazard assessment en
dc.subject.other prediction en
dc.subject.other self organization en
dc.subject.other slope failure en
dc.subject.other slope stability en
dc.title Computational intelligence tools for the prediction of slope performance en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compgeo.2007.06.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compgeo.2007.06.004 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The current paper illustrates the application of computational intelligence tools in slope performance prediction both in static and dynamic conditions. We present the results obtained by using the back-propagation algorithm, the theory of Bayesian neural networks and the Kohonen self-organizing maps, one of the most realistic models of the biological brain functions. We estimate slope stability controlling variables by combining computational intelligence tools with generic interaction matrix theory. Our emphasis is given to the prediction and estimation of the following: slope stability, coefficient of critical acceleration, earthquake induced displacements, unsaturated soil classification, classification according to the status of stability and failure mechanism for dry and wet slopes. Finally, we present an integrated methodology for assessing landslide hazard coupling computational intelligence tools and geographical information systems. (c) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Computers and Geotechnics en
dc.identifier.doi 10.1016/j.compgeo.2007.06.004 en
dc.identifier.isi ISI:000250947600004 en
dc.identifier.volume 34 en
dc.identifier.issue 5 en
dc.identifier.spage 362 en
dc.identifier.epage 384 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής