dc.contributor.author |
Ferentinou, MD |
en |
dc.contributor.author |
Sakellariou, MG |
en |
dc.date.accessioned |
2014-03-01T01:26:02Z |
|
dc.date.available |
2014-03-01T01:26:02Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0266-352X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17892 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
Back propagation |
en |
dc.subject |
Earthquake induced displacements |
en |
dc.subject |
Kohonen self-organizing maps |
en |
dc.subject |
Slope stability |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
Acceleration |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Backpropagation algorithms |
en |
dc.subject.other |
Bayesian networks |
en |
dc.subject.other |
Geographic information systems |
en |
dc.subject.other |
Self organizing maps |
en |
dc.subject.other |
Earthquake induced displacement |
en |
dc.subject.other |
Soil classification |
en |
dc.subject.other |
Landslides |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
back propagation |
en |
dc.subject.other |
Bayesian analysis |
en |
dc.subject.other |
dynamic analysis |
en |
dc.subject.other |
estimation method |
en |
dc.subject.other |
failure mechanism |
en |
dc.subject.other |
GIS |
en |
dc.subject.other |
hazard assessment |
en |
dc.subject.other |
prediction |
en |
dc.subject.other |
self organization |
en |
dc.subject.other |
slope failure |
en |
dc.subject.other |
slope stability |
en |
dc.title |
Computational intelligence tools for the prediction of slope performance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compgeo.2007.06.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compgeo.2007.06.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The current paper illustrates the application of computational intelligence tools in slope performance prediction both in static and dynamic conditions. We present the results obtained by using the back-propagation algorithm, the theory of Bayesian neural networks and the Kohonen self-organizing maps, one of the most realistic models of the biological brain functions. We estimate slope stability controlling variables by combining computational intelligence tools with generic interaction matrix theory. Our emphasis is given to the prediction and estimation of the following: slope stability, coefficient of critical acceleration, earthquake induced displacements, unsaturated soil classification, classification according to the status of stability and failure mechanism for dry and wet slopes. Finally, we present an integrated methodology for assessing landslide hazard coupling computational intelligence tools and geographical information systems. (c) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Computers and Geotechnics |
en |
dc.identifier.doi |
10.1016/j.compgeo.2007.06.004 |
en |
dc.identifier.isi |
ISI:000250947600004 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
362 |
en |
dc.identifier.epage |
384 |
en |