dc.contributor.author |
Kontargyri, VT |
en |
dc.contributor.author |
Gialketsi, AA |
en |
dc.contributor.author |
Tsekouras, GJ |
en |
dc.contributor.author |
Gonos, IF |
en |
dc.contributor.author |
Stathopulos, IA |
en |
dc.date.accessioned |
2014-03-01T01:26:05Z |
|
dc.date.available |
2014-03-01T01:26:05Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0378-7796 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17920 |
|
dc.subject |
Artificial neural network |
en |
dc.subject |
Critical flashover voltage |
en |
dc.subject |
High voltage insulators |
en |
dc.subject |
Polluted insulators |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Density (specific gravity) |
en |
dc.subject.other |
Electrodeposition |
en |
dc.subject.other |
Flashover |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Critical flashover voltage |
en |
dc.subject.other |
High voltage insulators |
en |
dc.subject.other |
Polluted insulators |
en |
dc.subject.other |
Electric insulators |
en |
dc.title |
Design of an artificial neural network for the estimation of the flashover voltage on insulators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.epsr.2006.10.017 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.epsr.2006.10.017 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This work attempts to apply an artificial neural network in order to estimate the critical flashover voltage on polluted insulators. The artificial neural network uses as input variables the following characteristics of the insulator: diameter, height, creepage distance, form factor and equivalent salt deposit density. and estimates the critical flashover voltage. The data used to train the network and test its performance is derived from experimental measurements and a mathematical model. Various cases have been studied and their results presented separately. Training and testing sets have been modified for each case. (C) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Electric Power Systems Research |
en |
dc.identifier.doi |
10.1016/j.epsr.2006.10.017 |
en |
dc.identifier.isi |
ISI:000250134200002 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1532 |
en |
dc.identifier.epage |
1540 |
en |