HEAL DSpace

Detection and discrimination between oil spills and look-alike phenomena through neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T01:26:05Z
dc.date.available 2014-03-01T01:26:05Z
dc.date.issued 2007 en
dc.identifier.issn 0924-2716 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17923
dc.subject Neural networks en
dc.subject Oil spill en
dc.subject Pollution en
dc.subject SAR en
dc.subject Training en
dc.subject.classification Geography, Physical en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Clouds en
dc.subject.other Gravitation en
dc.subject.other Oil spills en
dc.subject.other Remote sensing en
dc.subject.other Synthetic aperture radar en
dc.subject.other Water pollution en
dc.subject.other Backscatter values en
dc.subject.other Dark formation detection en
dc.subject.other Short gravity sea waves en
dc.subject.other Neural networks en
dc.subject.other artificial neural network en
dc.subject.other backscatter en
dc.subject.other detection method en
dc.subject.other marine environment en
dc.subject.other marine pollution en
dc.subject.other oil spill en
dc.subject.other synthetic aperture radar en
dc.title Detection and discrimination between oil spills and look-alike phenomena through neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.isprsjprs.2007.05.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.isprsjprs.2007.05.003 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Synthetic Aperture Radar (SAR) images are extensively used for dark formation detection in the marine environment, as their recording is independent of clouds and weather. Dark formations can be caused by man made actions (e.g. oil spill discharging) or natural ocean phenomena (e.g. natural slicks, wind front areas). Radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean phenomena because they damp the capillary and short gravity sea waves. The ability of neural networks to detect dark formations in high resolution SAR images and to discriminate oil spills from look-alike phenomena simultaneously was examined. Two different neural networks are used; one to detect dark formations and the second one to perform a classification to oil spills or look-alikes. The proposed method is very promising in detecting dark formations and discriminating oil spills from look-alikes as it detects with an overall accuracy of 94% the dark formations and discriminate correctly 89% of examined cases. (C) 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName ISPRS Journal of Photogrammetry and Remote Sensing en
dc.identifier.doi 10.1016/j.isprsjprs.2007.05.003 en
dc.identifier.isi ISI:000249860900002 en
dc.identifier.volume 62 en
dc.identifier.issue 4 en
dc.identifier.spage 264 en
dc.identifier.epage 270 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής