dc.contributor.author |
Prospathopoulos, JM |
en |
dc.contributor.author |
Voutsinas, SG |
en |
dc.date.accessioned |
2014-03-01T01:26:05Z |
|
dc.date.available |
2014-03-01T01:26:05Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0001-4966 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17924 |
|
dc.subject |
Ray Tracing |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.other |
Acoustic wave propagation |
en |
dc.subject.other |
Atmospheric turbulence |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Energy dissipation |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Velocity control |
en |
dc.subject.other |
Atmospheric absorption |
en |
dc.subject.other |
Near ground propagation |
en |
dc.subject.other |
Refractive atmosphere |
en |
dc.subject.other |
Ray tracing |
en |
dc.subject.other |
article |
en |
dc.subject.other |
atmosphere |
en |
dc.subject.other |
calculation |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
sound |
en |
dc.subject.other |
technique |
en |
dc.subject.other |
wind |
en |
dc.subject.other |
Atmosphere |
en |
dc.subject.other |
Environment |
en |
dc.subject.other |
Models, Statistical |
en |
dc.subject.other |
Models, Theoretical |
en |
dc.subject.other |
Reproducibility of Results |
en |
dc.subject.other |
Sound |
en |
dc.subject.other |
Sound Spectrography |
en |
dc.subject.other |
Wind |
en |
dc.title |
Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1121/1.2764476 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1121/1.2764476 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The determination of appropriate sound speed profiles in the modeling of near-ground propagation using a ray tracing method is investigated using a ray tracing model which is capable of performing axisymmetric calculations of the sound field around an isolated source. Eigenrays are traced using an iterative procedure which integrates the trajectory equations for each ray launched from the source at a specific direction. The calculation of sound energy losses is made by introducing appropriate coefficients to the equations representing the effect of ground and atmospheric absorption and the interaction with the atmospheric turbulence. The model is validated against analytical and numerical predictions of other methodologies for simple cases, as well as against measurements for nonrefractive atmospheric environments. A systematic investigation for near-ground propagation in downward and upward refractive atmosphere is made using experimental data. Guidelines for the suitable simulation of the wind velocity profile are derived by correlating predictions with measurements. (c) 2007 Acoustical Society of America. |
en |
heal.publisher |
ACOUSTICAL SOC AMER AMER INST PHYSICS |
en |
heal.journalName |
Journal of the Acoustical Society of America |
en |
dc.identifier.doi |
10.1121/1.2764476 |
en |
dc.identifier.isi |
ISI:000249321700009 |
en |
dc.identifier.volume |
122 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1391 |
en |
dc.identifier.epage |
1403 |
en |