dc.contributor.author |
Chatzigiannakis, V |
en |
dc.contributor.author |
Papavassiliou, S |
en |
dc.date.accessioned |
2014-03-01T01:26:08Z |
|
dc.date.available |
2014-03-01T01:26:08Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1530-437X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/17934 |
|
dc.subject |
Anomaly detection |
en |
dc.subject |
Principal component analysis (PCA) |
en |
dc.subject |
Spatial correlation |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Instruments & Instrumentation |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Anomaly detection |
en |
dc.subject.other |
Data integrity |
en |
dc.subject.other |
Distributed sensor network |
en |
dc.subject.other |
Spatial correlation |
en |
dc.subject.other |
Computer crime |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Data fusion |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Signal receivers |
en |
dc.subject.other |
Sensor networks |
en |
dc.title |
Diagnosing anomalies and identifying faulty nodes in sensor networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/JSEN.2007.894147 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/JSEN.2007.894147 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper, an anomaly detection approach that fuses data gathered from different nodes in a distributed sensor network is proposed and evaluated. The emphasis of this work is placed on the data integrity and accuracy problem caused by compromised or malfunctioning nodes. The proposed approach utilizes and applies Principal Component Analysis simultaneously on multiple metrics received from various sensors. One of the key features of the proposed approach is that it provides an integrated methodology of taking into consideration and combining effectively correlated sensor data, in a distributed fashion, in order to reveal anomalies that span through a number of neighboring sensors. Furthermore, it allows the integration of results from neighboring network areas to detect correlated anomalies/attacks that involve multiple groups of nodes. The efficiency and effectiveness of the proposed approach is demonstrated for a real use case that utilizes meteorological data collected from a distributed set of sensor nodes. © 2007 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Sensors Journal |
en |
dc.identifier.doi |
10.1109/JSEN.2007.894147 |
en |
dc.identifier.isi |
ISI:000246780600005 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
637 |
en |
dc.identifier.epage |
645 |
en |