HEAL DSpace

Diagnosing anomalies and identifying faulty nodes in sensor networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzigiannakis, V en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T01:26:08Z
dc.date.available 2014-03-01T01:26:08Z
dc.date.issued 2007 en
dc.identifier.issn 1530-437X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17934
dc.subject Anomaly detection en
dc.subject Principal component analysis (PCA) en
dc.subject Spatial correlation en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Instruments & Instrumentation en
dc.subject.classification Physics, Applied en
dc.subject.other Anomaly detection en
dc.subject.other Data integrity en
dc.subject.other Distributed sensor network en
dc.subject.other Spatial correlation en
dc.subject.other Computer crime en
dc.subject.other Data acquisition en
dc.subject.other Data fusion en
dc.subject.other Principal component analysis en
dc.subject.other Signal receivers en
dc.subject.other Sensor networks en
dc.title Diagnosing anomalies and identifying faulty nodes in sensor networks en
heal.type journalArticle en
heal.identifier.primary 10.1109/JSEN.2007.894147 en
heal.identifier.secondary http://dx.doi.org/10.1109/JSEN.2007.894147 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, an anomaly detection approach that fuses data gathered from different nodes in a distributed sensor network is proposed and evaluated. The emphasis of this work is placed on the data integrity and accuracy problem caused by compromised or malfunctioning nodes. The proposed approach utilizes and applies Principal Component Analysis simultaneously on multiple metrics received from various sensors. One of the key features of the proposed approach is that it provides an integrated methodology of taking into consideration and combining effectively correlated sensor data, in a distributed fashion, in order to reveal anomalies that span through a number of neighboring sensors. Furthermore, it allows the integration of results from neighboring network areas to detect correlated anomalies/attacks that involve multiple groups of nodes. The efficiency and effectiveness of the proposed approach is demonstrated for a real use case that utilizes meteorological data collected from a distributed set of sensor nodes. © 2007 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Sensors Journal en
dc.identifier.doi 10.1109/JSEN.2007.894147 en
dc.identifier.isi ISI:000246780600005 en
dc.identifier.volume 7 en
dc.identifier.issue 5 en
dc.identifier.spage 637 en
dc.identifier.epage 645 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής