HEAL DSpace

Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SG en
dc.contributor.author Valavanis, IK en
dc.contributor.author Nikita, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:26:08Z
dc.date.available 2014-03-01T01:26:08Z
dc.date.issued 2007 en
dc.identifier.issn 0933-3657 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17939
dc.subject Bootstrap en
dc.subject Computer-aided diagnosis en
dc.subject Ensembles of classifiers en
dc.subject Feature selection en
dc.subject Genetic algorithms en
dc.subject Liver CT images en
dc.subject Texture features en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Medical Informatics en
dc.subject.other Computer aided design en
dc.subject.other Feature extraction en
dc.subject.other Genetic algorithms en
dc.subject.other Image reconstruction en
dc.subject.other Medical imaging en
dc.subject.other Multilayer neural networks en
dc.subject.other Radiology en
dc.subject.other Bootstrap en
dc.subject.other Gray level difference methods en
dc.subject.other Spatial gray level dependence matrix en
dc.subject.other Texture features en
dc.subject.other Computerized tomography en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other clinical feature en
dc.subject.other computer assisted diagnosis en
dc.subject.other computer assisted tomography en
dc.subject.other differential diagnosis en
dc.subject.other fractal analysis en
dc.subject.other genetic algorithm en
dc.subject.other hemangioma en
dc.subject.other liver cell carcinoma en
dc.subject.other liver cyst en
dc.subject.other liver injury en
dc.subject.other perceptron en
dc.subject.other priority journal en
dc.subject.other radiologist en
dc.subject.other Algorithms en
dc.subject.other Diagnosis, Differential en
dc.subject.other Humans en
dc.subject.other Liver Diseases en
dc.subject.other Mathematical Computing en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Radiographic Image Interpretation, Computer-Assisted en
dc.subject.other Reproducibility of Results en
dc.subject.other Tomography, X-Ray Computed en
dc.title Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.artmed.2007.05.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.artmed.2007.05.002 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Objectives: The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed. Materials and methods: Number of regions of interests (ROIs) corresponding to C1-C4 have been defined by experienced radiologists in non-enhanced liver CT images. For each ROI, five distinct sets of texture features were extracted using first order statistics, spatial gray level dependence matrix, gray level difference method, Laws' texture energy measures, and fractal dimension measurements. Two different ECs were constructed and compared. The first one consists of five multilayer perceptron neural networks (NNs), each using as input one of the computed texture feature sets or its reduced version after genetic algorithm-based feature selection. The second EC comprised five different primary classifiers, namely one multilayer perceptron NN, one probabilistic NN, and three k-nearest neighbor classifiers, each fed with the combination of the five texture feature sets or their reduced versions. The final decision of each EC was extracted by using appropriate voting schemes, while bootstrap re-sampling was utilized in order to estimate the generalization ability of the CAD architectures based on the available relatively small-sized data set. Results: The best mean classification accuracy (84.96%) is achieved by the second EC using a fused feature set, and the weighted voting scheme. The fused feature set was obtained after appropriate feature selection applied to specific subsets of the original feature set. Conclusions: The comparative assessment of the various CAD architectures shows that combining three types of classifiers with a voting scheme, fed with identical feature sets obtained after appropriate feature selection and fusion, may result in an accurate system able to assist differential diagnosis of focal liver lesions from non-enhanced CT images. (c) 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Artificial Intelligence in Medicine en
dc.identifier.doi 10.1016/j.artmed.2007.05.002 en
dc.identifier.isi ISI:000249821200003 en
dc.identifier.volume 41 en
dc.identifier.issue 1 en
dc.identifier.spage 25 en
dc.identifier.epage 37 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής