HEAL DSpace

Distributed dislocation approach for cracks in couple-stress elasticity: Shear modes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gourgiotis, PA en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:26:10Z
dc.date.available 2014-03-01T01:26:10Z
dc.date.issued 2007 en
dc.identifier.issn 0376-9429 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/17949
dc.subject Couple-stress elasticity en
dc.subject Cracks en
dc.subject Distributed dislocations en
dc.subject Integral equations en
dc.subject.classification Mechanics en
dc.subject.other Couple-stress elasticity en
dc.subject.other Distributed dislocation en
dc.subject.other Crack tips en
dc.subject.other Cracks en
dc.subject.other Fracture mechanics en
dc.subject.other Integral equations en
dc.subject.other Microstructure en
dc.subject.other Numerical methods en
dc.subject.other Stresses en
dc.subject.other Elasticity en
dc.title Distributed dislocation approach for cracks in couple-stress elasticity: Shear modes en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10704-007-9139-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10704-007-9139-5 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The distributed dislocation technique proved to be in the past an effective approach in studying crack problems within classical elasticity. The present work aims at extending this technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting for effects of microstructure. As a first step, the technique is introduced to study finite-length cracks under remotely applied shear loadings (mode II and mode III cases). The mode II and mode III cracks are modeled by a continuous distribution of glide and screw dislocations, respectively, that create both standard stresses and couple stresses in the body. In particular, it is shown that the mode II case is governed by a singular integral equation with a more complicated kernel than that in classical elasticity. The numerical solution of this equation shows that a cracked material governed by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a material governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity. Finally, in the mode III case the corresponding governing integral equation is hypersingular with a cubic singularity. A new mechanical quadrature is introduced here for the numerical solution of this equation. The results in the mode III case for the crack-face displacement and the near-tip stress show significant departure from the predictions of classical fracture mechanics. © Springer Science+Business Media B.V. 2007. en
heal.publisher SPRINGER en
heal.journalName International Journal of Fracture en
dc.identifier.doi 10.1007/s10704-007-9139-5 en
dc.identifier.isi ISI:000254871000009 en
dc.identifier.volume 147 en
dc.identifier.issue 1-4 en
dc.identifier.spage 83 en
dc.identifier.epage 102 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής