dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Sotiropoulou, AB |
en |
dc.contributor.author |
Sotiropoulos, NB |
en |
dc.contributor.author |
Manios, M |
en |
dc.date.accessioned |
2014-03-01T01:26:19Z |
|
dc.date.available |
2014-03-01T01:26:19Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18009 |
|
dc.subject |
Exact analytic solutions |
en |
dc.subject |
Gas pressure diffusion equation |
en |
dc.subject |
Kidder's equation |
en |
dc.subject |
Non-linear ODEs |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Abel's equations |
en |
dc.subject.other |
Gas pressure diffusion equations |
en |
dc.subject.other |
Kidder's equation |
en |
dc.subject.other |
Mathematical physics |
en |
dc.subject.other |
Nonlinear mechanics |
en |
dc.subject.other |
Porous materials |
en |
dc.title |
Exact analytic solutions of the porous media and the gas pressure diffusion ODEs in non-linear mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijnonlinmec.2006.10.018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.10.018 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Two kinds of second-order non-linear ordinary differential equations (ODEs) appearing in mathematical physics and non-linear mechanics are analyzed in this paper. The one concerns the Kidder equation in porous media and the second the gas pressure diffusion equation. Both these equations are strongly non-linear including quadratic first-order derivatives (damping terms). By a series of admissible functional transformations we reduce the prescribed equations to Abel's equations of the second kind of the normal form that they do not admit exact analytic solutions in terms of known (tabulated) functions. According to a mathematical methodology recently developed concerning the construction of exact analytic solutions of the above class of Abel's equations, we succeed in performing the exact analytic solutions of both Kidder's and gas pressure diffusion equations. The boundary and initial data being used in the above constructions are in accordance with each specific problem under considerations. (C) 2007 Published by Elsevier Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/j.ijnonlinmec.2006.10.018 |
en |
dc.identifier.isi |
ISI:000246644400013 |
en |
dc.identifier.volume |
42 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
157 |
en |
dc.identifier.epage |
163 |
en |