dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:26:19Z |
|
dc.date.available |
2014-03-01T01:26:19Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0022-0396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18013 |
|
dc.subject |
Double resonance |
en |
dc.subject |
Eigenvalues and eigenvectors |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Local linking reduction method |
en |
dc.subject |
Neumann problem |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
p-Laplacian |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
SEMILINEAR ELLIPTIC PROBLEMS |
en |
dc.subject.other |
DOUBLE-RESONANCE |
en |
dc.subject.other |
VARIATIONAL-METHODS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
NONLINEARITIES |
en |
dc.subject.other |
REGULARITY |
en |
dc.subject.other |
OPERATORS |
en |
dc.title |
Existence and multiplicity of solutions for Neumann problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jde.2006.09.008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jde.2006.09.008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we examine semilinear and nonlinear Neumann problems with a nonsmooth locally Lipschitz potential function. Using variational methods based on the nonsmooth critical point theory, for the semilinear problem we prove a multiplicity result under conditions of double resonance at higher eigenvalues. Our proof involves a nonsmooth extension of the reduction method due to Castro-Lazer-Thews. The nonlinear problem is driven by the p-Laplacian. So first we make some observations about the beginning of the spectrum of (-Delta(p), W-1,W-p (Z)). Then we prove an existence and multiplicity result. The existence result permits complete double resonance. The multiplicity result specialized in the semilinear case (i.e. p = 2) corresponds to the super-sub quadratic situation. (c) 2006 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Differential Equations |
en |
dc.identifier.doi |
10.1016/j.jde.2006.09.008 |
en |
dc.identifier.isi |
ISI:000243310800001 |
en |
dc.identifier.volume |
232 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
35 |
en |