dc.contributor.author |
Denkowski, Z |
en |
dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:26:20Z |
|
dc.date.available |
2014-03-01T01:26:20Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18015 |
|
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Generalized nonsmooth Palais-Smale condition |
en |
dc.subject |
Local minimum |
en |
dc.subject |
Locally Lipschitz functions |
en |
dc.subject |
Nonsmooth Cerami condition |
en |
dc.subject |
Nonsmooth mountain pass theorem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Clarke subdifferential |
en |
dc.subject.other |
Generalized nonsmooth Palais-Smale condition |
en |
dc.subject.other |
Local minimum |
en |
dc.subject.other |
Locally Lipschitz functions |
en |
dc.subject.other |
Nonsmooth Cerami condition |
en |
dc.subject.other |
Nonsmooth mountain pass theorem |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
Existence of positive and of multiple solutions for nonlinear periodic problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2006.03.020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2006.03.020 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we consider a scalar periodic problem driven by the ordinary p-Laplacian differential operator and having a nonsmooth potential. Using a variational method based on nonsmooth critical point theory, first we prove the existence of a strictly positive solution. Then by strengthening our hypotheses on the nonsmooth potential, we prove the existence of a second periodic solution. (c) 2006 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2006.03.020 |
en |
dc.identifier.isi |
ISI:000245706100016 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
2289 |
en |
dc.identifier.epage |
2314 |
en |