dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:26:20Z |
|
dc.date.available |
2014-03-01T01:26:20Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0008-4395 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18016 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-34548593147&partnerID=40&md5=fcc5925c91a4ec6cc1699e63d68c29f9 |
en |
dc.subject |
Locally Lipschitz potential |
en |
dc.subject |
Nonsmooth critical point theory |
en |
dc.subject |
Nonsmooth mountain pass theorem |
en |
dc.subject |
P-Laplacian |
en |
dc.subject |
Positive solutions |
en |
dc.subject |
Principal eigen-value |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
LINEAR DIRICHLET PROBLEM |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
RESONANCE |
en |
dc.title |
Existence of positive solutions for nonlinear noncoercive hemivariational inequalities |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we investigate the existence of positive solutions for nonlinear elliptic problems driven by the p-Laplacian with a nonsmooth potential (hemivariational inequality). Under asymptotic conditions that make the Euler functional indefinite and incorporate in our framework the asymptotically linear problems, using a variational approach based on nonsmooth critical point theory, we obtain positive smooth solutions. Our analysis also leads naturally to multiplicity results. © Canadian Mathematical Society 2007. |
en |
heal.publisher |
CANADIAN MATHEMATICAL SOC |
en |
heal.journalName |
Canadian Mathematical Bulletin |
en |
dc.identifier.isi |
ISI:000248939300004 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
356 |
en |
dc.identifier.epage |
364 |
en |