HEAL DSpace

Extending driver's horizon through comprehensive incident detection in vehicular networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzigiannakis, V en
dc.contributor.author Grammatikou, M en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T01:26:21Z
dc.date.available 2014-03-01T01:26:21Z
dc.date.issued 2007 en
dc.identifier.issn 0018-9545 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18024
dc.subject Principal component analysis (PCA) en
dc.subject Probability theory en
dc.subject Road traffic en
dc.subject Road traffic incident detection en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Highway accidents en
dc.subject.other Principal component analysis en
dc.subject.other Probability en
dc.subject.other Traffic surveys en
dc.subject.other Road traffic incident detection en
dc.subject.other Vehicular networks en
dc.subject.other Highway traffic control en
dc.title Extending driver's horizon through comprehensive incident detection in vehicular networks en
heal.type journalArticle en
heal.identifier.primary 10.1109/TVT.2007.906410 en
heal.identifier.secondary http://dx.doi.org/10.1109/TVT.2007.906410 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, based on principal component analysis (PCA), a comprehensive and efficient incident detection approach that uses probabilistic network and processing methodologies to exploit spatial and temporal correlations and dependencies in vehicular networks, and therefore derive a reliable picture of the driving context, is proposed. The proposed approach provides an integrated way of effectively processing and organizing accumulated spatiotemporal information from a variety of different locations, vehicles, and sources and integrates it into a comprehensive outcome. The use of a PCA-based approach aims at reducing the dimensionality of the data set in which there is a large number of interrelated variables while retaining as much as possible of the variation present in the data set. The operational effectiveness of our proposed incident detection methodology is evaluated via modeling and simulation under different scenarios that represent a wide area of incidents, which range from accident occurrences to alterations in traffic patterns. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Vehicular Technology en
dc.identifier.doi 10.1109/TVT.2007.906410 en
dc.identifier.isi ISI:000251192000003 en
dc.identifier.volume 56 en
dc.identifier.issue 6 I en
dc.identifier.spage 3256 en
dc.identifier.epage 3265 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής