HEAL DSpace

Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anastasopoulos, I en
dc.contributor.author Gazetas, G en
dc.contributor.author Bransby, MF en
dc.contributor.author Davies, MCR en
dc.contributor.author El Nahas, A en
dc.date.accessioned 2014-03-01T01:26:21Z
dc.date.available 2014-03-01T01:26:21Z
dc.date.issued 2007 en
dc.identifier.issn 1090-0241 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18032
dc.subject Finite Element Analysis en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other DIRECT SHEAR TESTS en
dc.subject.other DIP-SLIP FAULTS en
dc.subject.other SOIL en
dc.subject.other DEFORMATION en
dc.subject.other EVOLUTION en
dc.subject.other FAILURE en
dc.subject.other MODELS en
dc.subject.other BANDS en
dc.title Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)1090-0241(2007)133:8(943) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)1090-0241(2007)133:8(943) en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The three notorious earthquakes of 1999 in Turkey (Kocaeli and Duzce) and Taiwan (Chi-Chi), having offered numerous examples of surface fault rupturing underneath civil engineering structures, prompted increased interest in the subject. This paper develops a nonlinear finite-clement methodology to study dip-slip ("normal" and "reverse") fault rupture propagation through sand. The procedure is verified through successful Class A predictions of four centrifuge model tests. The validated methodology is then utilized in a parametric study of fault rupture propagation through sand. Emphasis is given to results of engineering significance, such as: (1) the location of fault outcropping; (2) the vertical displacement profile of the ground surface; and (3) the minimum fault offset at bedrock necessary for the rupture to reach the ground surface. The analysis shows that dip-slip faults refract at the soil-rock interface, initially increasing in dip. Normal faults may keep increasing their dip as they approach the ground surface, as a function of the peak friction angle rho(p) and the angle of dilation psi(p). In contrast, reverse faults tend to decrease in dip, as they emerge on the ground surface. For small values of the base fault offset, h, relative to the soil thickness, H, a dip-slip rupture cannot propagate all the way to the surface. The h/H ratio required for outcropping is an increasing function of soil "ductility." Reverse faults require significantly higher h/H to outcrop, compared to normal faults. When the rupture outcrops, the height of the fault scrap, s, also depends on soil ductility. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING en
dc.identifier.doi 10.1061/(ASCE)1090-0241(2007)133:8(943) en
dc.identifier.isi ISI:000248137300004 en
dc.identifier.volume 133 en
dc.identifier.issue 8 en
dc.identifier.spage 943 en
dc.identifier.epage 958 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής