HEAL DSpace

Flexural-torsional buckling and vibration analysis of composite beams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:26:22Z
dc.date.available 2014-03-01T01:26:22Z
dc.date.issued 2007 en
dc.identifier.issn 1546-2218 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18036
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-35348934222&partnerID=40&md5=388848cb485ed70957002a205da80d75 en
dc.subject Analog equation method en
dc.subject Boundary integral equation en
dc.subject Composite beam en
dc.subject Flexural-torsional buckling en
dc.subject Flexural-torsional vibration en
dc.subject Forced vibrations en
dc.subject Free vibrations en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary element method en
dc.subject.other Compressive strength en
dc.subject.other Loads (forces) en
dc.subject.other Problem solving en
dc.subject.other Vibration analysis en
dc.subject.other Analog equation method en
dc.subject.other Boundary integral equation en
dc.subject.other Flexural-torsional buckling en
dc.subject.other Flexural-torsional vibration en
dc.subject.other Forced vibrations en
dc.subject.other Free vibrations en
dc.subject.other Composite beams and girders en
dc.title Flexural-torsional buckling and vibration analysis of composite beams en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper the general flexuraltorsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by the most general linear boundary conditions. The resulting problems are (i) the flexural-torsional buckling problem, which is described by three coupled ordinary differential equations and (ii) the flexural-torsional vibration problem, which is described by three coupled partial differential equations. Both problems are solved employing a boundary integral equation approach. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the method can treat composite beams of both thin and thick walled cross sections taking into account the warping along the thickness of the walls. The proposed method overcomes the shortcoming of possible thin tube theory (TTT) solution, which its utilization has been proven to be prohibitive even in thin walled homogeneous sections. Example problems of composite beams are analysed, subjected to compressive or vibratory loading, to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. Moreover, useful conclusions are drawn from the buckling and dynamic response of the beam. Copyright © 2007 Tech Science Press. en
heal.publisher TECH SCIENCE PRESS en
heal.journalName Computers, Materials and Continua en
dc.identifier.isi ISI:000250025100004 en
dc.identifier.volume 6 en
dc.identifier.issue 2 en
dc.identifier.spage 103 en
dc.identifier.epage 115 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής