HEAL DSpace

Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nikolopoulos, K en
dc.contributor.author Goodwin, P en
dc.contributor.author Patelis, A en
dc.contributor.author Assimakopoulos, V en
dc.date.accessioned 2014-03-01T01:26:22Z
dc.date.available 2014-03-01T01:26:22Z
dc.date.issued 2007 en
dc.identifier.issn 0377-2217 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18040
dc.subject Analogies en
dc.subject Forecasting en
dc.subject Judgment en
dc.subject Neural networks en
dc.subject Regression en
dc.subject.classification Management en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Decision theory en
dc.subject.other Forecasting en
dc.subject.other Linear programming en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Regression analysis en
dc.subject.other Alternative forecasting approaches en
dc.subject.other Bivariate regression models en
dc.subject.other Human judgment en
dc.subject.other Nearest neighbor analysis en
dc.subject.other Queueing theory en
dc.title Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ejor.2006.03.047 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ejor.2006.03.047 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Multiple linear regression (MLR) is a popular method for producing forecasts when data on relevant independent variables (or cues) is available. The accuracy of the technique in forecasting the impact on Greek TV audience shares of programmes showing sport events is compared with forecasts produced by: (1) a simple bivariate regression model, (2) three different types of artificial neural network, (3) three forms of nearest neighbour analysis and (4) human judgment. MLR was found to perform relatively poorly. The application of Theil's bias decomposition and a Brunswik lens decomposition suggested that this was because of its inability to handle complex non-linearities in the relationship between the dependent variable and the cues and its tendency to overfit the in-sample data. Much higher accuracy was obtained from forecasts based on a simple bivariate regression model, a simple nearest neighbour procedure and from two of the types of artificial neural network. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName European Journal of Operational Research en
dc.identifier.doi 10.1016/j.ejor.2006.03.047 en
dc.identifier.isi ISI:000244380500022 en
dc.identifier.volume 180 en
dc.identifier.issue 1 en
dc.identifier.spage 354 en
dc.identifier.epage 368 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής