HEAL DSpace

Further contributions to nonisomorphic two level orthogonal arrays

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Evangelaras, H en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Lappas, E en
dc.date.accessioned 2014-03-01T01:26:23Z
dc.date.available 2014-03-01T01:26:23Z
dc.date.issued 2007 en
dc.identifier.issn 0378-3758 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18051
dc.subject Construction algorithm en
dc.subject Estimation capacity en
dc.subject Isomorphism en
dc.subject Minimum aberration en
dc.subject Orthogonal arrays en
dc.subject.classification Statistics & Probability en
dc.subject.other HADAMARD-MATRICES en
dc.subject.other INEQUIVALENT PROJECTIONS en
dc.subject.other ABERRATION en
dc.subject.other DESIGNS en
dc.title Further contributions to nonisomorphic two level orthogonal arrays en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jspi.2006.03.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jspi.2006.03.006 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper we construct all possible orthogonal arrays OA(n. q, 2, t) with 12 <= n <= 24 runs and 3 <= q <= 6 factors, with 28 <= n <= 40 runs and 3 <= q <= 5 factors as well as those with 44 <= n <= 64 runs and 3 <= q <= 4 factors and present those that are nonisomorphic. A discussion on the novelty and the superiority of many of the designs found in terms of isomorphism, generalized minimum aberration and estimation capacity has also been made. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Statistical Planning and Inference en
dc.identifier.doi 10.1016/j.jspi.2006.03.006 en
dc.identifier.isi ISI:000245168100029 en
dc.identifier.volume 137 en
dc.identifier.issue 6 en
dc.identifier.spage 2080 en
dc.identifier.epage 2086 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record