dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.contributor.author |
Lappas, E |
en |
dc.date.accessioned |
2014-03-01T01:26:23Z |
|
dc.date.available |
2014-03-01T01:26:23Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0378-3758 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18051 |
|
dc.subject |
Construction algorithm |
en |
dc.subject |
Estimation capacity |
en |
dc.subject |
Isomorphism |
en |
dc.subject |
Minimum aberration |
en |
dc.subject |
Orthogonal arrays |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
HADAMARD-MATRICES |
en |
dc.subject.other |
INEQUIVALENT PROJECTIONS |
en |
dc.subject.other |
ABERRATION |
en |
dc.subject.other |
DESIGNS |
en |
dc.title |
Further contributions to nonisomorphic two level orthogonal arrays |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jspi.2006.03.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jspi.2006.03.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we construct all possible orthogonal arrays OA(n. q, 2, t) with 12 <= n <= 24 runs and 3 <= q <= 6 factors, with 28 <= n <= 40 runs and 3 <= q <= 5 factors as well as those with 44 <= n <= 64 runs and 3 <= q <= 4 factors and present those that are nonisomorphic. A discussion on the novelty and the superiority of many of the designs found in terms of isomorphism, generalized minimum aberration and estimation capacity has also been made. (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Statistical Planning and Inference |
en |
dc.identifier.doi |
10.1016/j.jspi.2006.03.006 |
en |
dc.identifier.isi |
ISI:000245168100029 |
en |
dc.identifier.volume |
137 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
2080 |
en |
dc.identifier.epage |
2086 |
en |