dc.contributor.author |
Drivaliaris, D |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:26:24Z |
|
dc.date.available |
2014-03-01T01:26:24Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1687-2762 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18057 |
|
dc.subject |
Differential Equation |
en |
dc.subject |
inf-sup condition |
en |
dc.subject |
linear functionals |
en |
dc.subject |
Monotone Operator |
en |
dc.subject |
normed space |
en |
dc.subject |
reflexive banach space |
en |
dc.subject |
Value Function |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SPACES |
en |
dc.title |
Generalizations of the Lax-Milgram theorem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/2007/87104 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/2007/87104 |
en |
heal.identifier.secondary |
87104 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In particular, we give sufficient conditions for a real-valued function defined on the product of a reflexive Banach space and a normed space to represent all bounded linear functionals of the latter. We also give two applications to singular differential equations. Copyright (c) 2007 D. Drivaliaris and N. Yannakakis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
en |
heal.publisher |
HINDAWI PUBLISHING CORPORATION |
en |
heal.journalName |
BOUNDARY VALUE PROBLEMS |
en |
dc.identifier.doi |
10.1155/2007/87104 |
en |
dc.identifier.isi |
ISI:000247593100001 |
en |