dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:26:24Z |
|
dc.date.available |
2014-03-01T01:26:24Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0001-8708 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18058 |
|
dc.subject |
Banach spaces |
en |
dc.subject |
Co-analytic ranks |
en |
dc.subject |
Interpolation method |
en |
dc.subject |
Schauder tree bases |
en |
dc.subject |
Strong boundedness |
en |
dc.subject |
Thin sets |
en |
dc.subject |
Universal spaces |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
COANALYTIC FAMILIES |
en |
dc.subject.other |
BAIRE-1 FUNCTIONS |
en |
dc.subject.other |
UNIVERSAL |
en |
dc.title |
Genericity and amalgamation of classes of Banach spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.aim.2006.05.013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.aim.2006.05.013 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We study universality problems in Banach space theory. We show that if A is an analytic class, in the Effros-Borel structure of subspaces of C ([0, 1]), of non-universal separable Banach spaces, then there exists a non-universal separable Banach space Y, with a Schauder basis, that contains isomorphs of each member of A with the bounded approximation property. The proof is based on the amalgamation technique of a class C of separable Banach spaces, introduced in the paper. We show, among others, that there exists a separable Banach space R not containing L-1 (0, 1) such that the indices beta and r(ND) are unbounded on the set of Baire-1 elements of the ball of the double dual R** of R. This answers two questions of H.P. Rosenthal. We also introduce the concept of a strongly bounded class of separable Banach spaces. A class C of separable Banach spaces is strongly bounded if for every analytic subset A of C there exists Y is an element of C that contains all members of A up to isomorphism. We show that several natural classes of separable Banach spaces are strongly bounded, among them the class of non-universal spaces with a Schauder basis, the class of reflexive spaces with a Schauder basis, the class of spaces with a shrinking Schauder basis and the class of spaces with Schauder basis not containing a minimal Banach space X. (c) 2006 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Advances in Mathematics |
en |
dc.identifier.doi |
10.1016/j.aim.2006.05.013 |
en |
dc.identifier.isi |
ISI:000244704600008 |
en |
dc.identifier.volume |
209 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
666 |
en |
dc.identifier.epage |
748 |
en |