HEAL DSpace

Geometrically nonlinear analysis of elastic membranes with embedded rigid inclusions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nerantzaki, MS en
dc.contributor.author Kandilas, CB en
dc.date.accessioned 2014-03-01T01:26:24Z
dc.date.available 2014-03-01T01:26:24Z
dc.date.issued 2007 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18060
dc.subject Analog equation method en
dc.subject Boundary elements en
dc.subject Elastic membranes en
dc.subject Large deflections en
dc.subject Nonlinear en
dc.subject Rigid inclusion en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Boundary conditions en
dc.subject.other Elasticity en
dc.subject.other Inverse kinematics en
dc.subject.other Nonlinear equations en
dc.subject.other Phase equilibria en
dc.subject.other Problem solving en
dc.subject.other Rigidity en
dc.subject.other Analog equation methods en
dc.subject.other Elastic membranes en
dc.subject.other Large deflections en
dc.subject.other Rigid inclusion en
dc.subject.other Membranes en
dc.title Geometrically nonlinear analysis of elastic membranes with embedded rigid inclusions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enganabound.2006.09.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enganabound.2006.09.005 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper the deformation of membranes containing rigid inclusions is analyzed. These rigid inclusions can significantly change the entire stress distribution in the membrane and therefore create major difficulties for the design. The initially flat membrane, which may be prestretched by boundary in-plane tractions or displacements, is subjected to externally applied loads and to the weight of the rigid inclusions. The composite system is examined in cases where its deformation reaches a state for which the undeformed and deformed shapes are substantially different. In such cases large deflections of membranes are considered, which result from nonlinear kinematic relations. The three coupled nonlinear equations in terms of the displacements governing the response of the membrane are solved using the analog equation method, which reduces the problem to the solution of three uncoupled Poisson's equations with fictitious domain source densities. The problem is strongly nonlinear [Katsikadelis IT, Nerantzaki MS. The boundary element method for nonlinear problems. Eng Anal Boundary Elements 1999;23:365-73]. In addition to the geometrical nonlinearity, the problem is itself nonlinear, since the membrane's reactions on the boundary of the rigid inclusions are not a priori known as they depend on the produced deflection surface. Iterative schemes are developed for calculation of deformed membrane's configuration, which converge to the final equilibrium state of the membrane with the given external applied loads. Several example problems are presented, which illustrate the method and demonstrate its accuracy and efficiency. The method employed for the solution is boundary only with all the advantages of the pure BEM. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Engineering Analysis with Boundary Elements en
dc.identifier.doi 10.1016/j.enganabound.2006.09.005 en
dc.identifier.isi ISI:000244802200004 en
dc.identifier.volume 31 en
dc.identifier.issue 3 en
dc.identifier.spage 216 en
dc.identifier.epage 225 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής