dc.contributor.author |
Arribas, M |
en |
dc.contributor.author |
Elipe, A |
en |
dc.contributor.author |
Kalvouridis, T |
en |
dc.contributor.author |
Palacios, M |
en |
dc.date.accessioned |
2014-03-01T01:26:26Z |
|
dc.date.available |
2014-03-01T01:26:26Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0923-2958 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18076 |
|
dc.subject |
Central configurations |
en |
dc.subject |
Homographic solutions |
en |
dc.subject |
Ring n-body problem |
en |
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
3 RIGID BODIES |
en |
dc.subject.other |
RING PROBLEM |
en |
dc.subject.other |
MOTION |
en |
dc.title |
Homographic solutions in the planar n + 1 body problem with quasi-homogeneous potentials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10569-007-9083-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10569-007-9083-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We prove that for generalized forces which are function of the mutual distance, the ring n + 1 configuration is a central configuration. Besides, we show that it is a homographic solution. We apply the above results to quasi-homogeneous potentials. © 2007 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Celestial Mechanics and Dynamical Astronomy |
en |
dc.identifier.doi |
10.1007/s10569-007-9083-8 |
en |
dc.identifier.isi |
ISI:000248911000001 |
en |
dc.identifier.volume |
99 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
12 |
en |