dc.contributor.author |
Rentizelas, A |
en |
dc.contributor.author |
Tziralis, G |
en |
dc.contributor.author |
Kirytopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:26:28Z |
|
dc.date.available |
2014-03-01T01:26:28Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
17460573 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18090 |
|
dc.subject |
GA |
en |
dc.subject |
Genetic algorithms |
en |
dc.subject |
Investment appraisal |
en |
dc.subject |
MCS |
en |
dc.subject |
Monte Carlo simulation |
en |
dc.subject |
Project management |
en |
dc.subject |
Risk analysis |
en |
dc.title |
Incorporating uncertainty in optimal investment decisions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1504/WREMSD.2007.014046 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1504/WREMSD.2007.014046 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Investment decisions are now more crucial than ever. The investors are in need of sound arguments, which will be able to shape the investment specifications and appraise their uncertain nature. This paper proposes an innovative approach that merges optimisation and risk analysis in one single method. The two-step investment appraisal approach reaches an optimum through a Genetic Algorithm optimisation and then assesses the environment's risk through a Monte Carlo simulation. The approach, thus, offers the best investment characteristics, as well as information about its implied risk. The use of the method is illustrated through an extensive Case Study. Copyright © 2007 Inderscience Enterprises Ltd. |
en |
heal.journalName |
World Review of Entrepreneurship, Management and Sustainable Development |
en |
dc.identifier.doi |
10.1504/WREMSD.2007.014046 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
273 |
en |
dc.identifier.epage |
283 |
en |