dc.contributor.author |
Kotsireas, IS |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:26:28Z |
|
dc.date.available |
2014-03-01T01:26:28Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18095 |
|
dc.subject |
Hadamard matrices |
en |
dc.subject |
Orthogonal designs |
en |
dc.subject |
Systems of polynomial equations |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Computer operating systems |
en |
dc.subject.other |
Polynomial approximation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Hadamard matrices |
en |
dc.subject.other |
High performance computing |
en |
dc.subject.other |
Orthogonal designs |
en |
dc.subject.other |
Polynomial equations |
en |
dc.subject.other |
Matrix algebra |
en |
dc.title |
Inequivalent Hadamard matrices from orthogonal designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1145/1278177.1278194 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1278177.1278194 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The systems of equations arising from the search for inequivalent Hadamard matrices from full orthogonal designs using circulant and symmetric block matrices, can be solved using high-performance computing. Not all orthogonal designs produce inequivalent Hadamard matrices, because the corresponding systems of equations may (or may not) possess solutions. We use Maple, Magma and Unix tools to find many new inequivalent Hadamard matrices. Copyright 2007 ACM. |
en |
heal.journalName |
PASCO'07: Proceedings of the 2007 International Workshop on Parallel Symbolic Computation |
en |
dc.identifier.doi |
10.1145/1278177.1278194 |
en |
dc.identifier.spage |
95 |
en |
dc.identifier.epage |
96 |
en |